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Abstract 31 

 32 

Objective: To validate an automatic scheme for the segmentation and quantitative analysis of the medial 33 

(MM) and lateral meniscus (LM) in magnetic resonance (MR) images of the knee joint. 34 

 35 

Method: We analysed sagittal water-excited dual-echo steady-state MR images of the knee joint from a 36 

subset of the Osteoarthritis Initiative cohort. The MM and LM were automatically segmented in the MR images 37 

based on a 3D deformable model approach. Quantitative parameters including volume, subluxation and tibial-38 

coverage were automatically calculated from the segmentations for comparison (Wilcoxon tests) between 39 

knees with variable radiographic osteoarthritis (rOA), medial and lateral joint space narrowing (mJSN, lJSN) 40 

and pain characteristics. Automatic segmentations and estimated parameters were evaluated for accuracy 41 

using manual delineations of the menisci in 88 pathological knee MR examinations at baseline and 12 months 42 

time-points. 43 

 44 

Results: The median (95% confidence-interval) Dice similarity index ( 45 

 2 ∗ |���� ∩ 
����
| �|����| + |
����
|�⁄ ∗ 100) between the manual and automated segmentations for the 46 

MM and LM were 78.3%(75.0—78.7), 83.9%(82.1—83.9) at baseline and 75.3%(72.8—76.9), 83.0%(81.6—47 

83.5) at 12 months. Pearson coefficients between automatic and manual segmentation parameters ranged 48 

from r=0.70 to r=0.92. MM in rOA and mJSN knees had significantly greater subluxation and smaller tibial-49 

coverage than no-rOA and no-mJSN knees. LM in rOA knees had significantly greater volumes and tibial-50 

coverage than no-rOA knees. 51 

  52 

Conclusion: Our automated method successfully segmented the menisci in normal and osteoarthritic knee 53 

MR images and detected meaningful morphological differences in the MM and LM with respect to rOA and 54 

JSN. Our approach will facilitate analyses of the menisci in prospective MR cohorts such as the OAI for 55 

investigations into pathophysiological changes occurring in early OA development. 56 

 57 

Keywords: medial meniscus, lateral meniscus, automated segmentation, morphometric analysis, 58 

osteoarthritis, MRI 59 

 60 
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Abstract 31 

 32 

Objective: To validate an automatic scheme for the segmentation and quantitative analysis of the medial 33 

(MM) and lateral meniscus (LM) in magnetic resonance (MR) images of the knee. 34 

 35 

Method: We analysed sagittal water-excited dual-echo steady-state MR images of the knee from a subset of 36 

the Osteoarthritis Initiative cohort. The MM and LM were automatically segmented in the MR images based on 37 

a deformable model approach. Quantitative parameters including volume, subluxation and tibial-coverage 38 

were automatically calculated for comparison (Wilcoxon tests) between knees with variable radiographic 39 

osteoarthritis (rOA), medial and lateral joint space narrowing (mJSN, lJSN) and pain. Automatic segmentations 40 

and estimated parameters were evaluated for accuracy using manual delineations of the menisci in 88 41 

pathological knee MR examinations at baseline and 12 months time-points. 42 

 43 

Results: The median (95% confidence-interval) Dice similarity index ( 44 

 2 ∗ |���� ∩ 
����
| �|����| + |
����
|�⁄ ∗ 100) between manual and automated segmentations for the MM 45 

and LM were 78.3%(75.0—78.7), 83.9%(82.1—83.9) at baseline and 75.3%(72.8—76.9), 83.0%(81.6—83.5) 46 

at 12 months. Pearson coefficients between automatic and manual segmentation parameters ranged from 47 

r=0.70 to r=0.92. MM in rOA/mJSN knees had significantly greater subluxation and smaller tibial-coverage 48 

than no-rOA/no-mJSN knees. LM in rOA knees had significantly greater volumes and tibial-coverage than no-49 

rOA knees. 50 

  51 

Conclusion: Our automated method successfully segmented the menisci in normal and osteoarthritic knee 52 

MR images and detected meaningful morphological differences with respect to rOA and JSN. Our approach 53 

will facilitate analyses of the menisci in prospective MR cohorts such as the OAI for investigations into 54 

pathophysiological changes occurring in early OA development. 55 
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Introduction  1 

 2 

Quantitative analyses of the medial meniscus (MM) and lateral meniscus (LM) from three-dimensional 3 

(3D) magnetic resonance (MR) imaging offer opportunities to better understand the pathophysiological 4 

processes involved in the structural and functional degeneration of the menisci associated with osteoarthritis 5 

(OA)1-3. Recent semi4-11 and fully-quantitative8-15 MR studies have reported significant differences in the 6 

volume, tibial-coverage and subluxation of the menisci between knees with distinctive radiographic OA 7 

(rOA), medial and lateral joint space narrowing (mJSN, lJSN) or pain scores. While MR scoring methods 8 

provide good reproducibility and reliability for clinical evaluation of the menisci4-6, acquisition of detailed 9 

quantitative data on these structures through MR segmentation offers increased measurement precision for 10 

investigating the in-vivo 3D morphological and biochemical characteristics of these fibro-cartilaginous discs 11 

(e.g. T2, T1ρ imaging16-19
, analysis of volume changes with OA or post surgery20-21). 12 

Manual segmentation of the menisci from 3D MR images is a time- and expertise intensive process (35 13 

minutes reported for segmentation of a single coronal water-excited double-echo steady-state (weDESS) 14 

MR9). Specifically, it requires numerous subjective interpretations for separating adjacent structures with 15 

comparable signal contrasts which predispose to low intra-rater reproducibility and high inter-rater 16 

variability12. A desirable direction is the automation the MR segmentation and analysis. 17 

Several semi-automatic methods for the 3D segmentation of the menisci have been developed to reduce both 18 

analysis time and rater biases19,20. However these still require expert training and varying levels of manual 19 

intervention. In terms of fully automated segmentation approaches22-25, good accuracy, as measured with the 20 

Dice similarity index (DSI)26, has been achieved for the MM (75±10%) and LM volumes (77±10%)24 and a 21 

total meniscal volume (81±3%)25 although these methods were only validated on healthy menisci. 22 

To the best of our knowledge, results and validation of fully automatic segmentations of the menisci from 23 

MR images of individuals with knee rOA have not been published. There are substantial technical challenges 24 

for automated segmentation of the menisci with pathological damage or degeneration which give rise to a 25 

spectrum of structural and biochemical tissue changes which, as illustrated in Fig. 1, are variably associated 26 

with increases in signal heterogeneity and shape variability1,14-18. Consequently, segmentation approaches that 27 

assume homogeneous signal intensity in the menisci are not well suited for morphometric analyses of the 28 

menisci in knees with rOA19,20, and although methods that combined shape- and image-priors provided 29 
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promising leads24,25, only preliminary results on the automatic segmentation of healthy meniscus have been 30 

reported in relatively small populations (N<14). 31 

The objectives of this study were to 1) develop a fully-automatic method for the segmentation and 32 

quantitative analysis of the individual MM and LM from MR images of the knee, 2) quantitatively evaluate the 33 

accuracy of the automatic segmentation and estimations of derived parameters such as volume, subluxation 34 

and tibial coverage and 3) to explore the sensitivity of the method in the detection of meaningful changes in 35 

meniscus parameters across individuals with various rOA grades, mJSN, lJSN and pain. 36 

[Figure 1] / [Table 1] 37 

Material and Method  38 

 39 

Patient and MR Image Datasets 40 

 41 

The MR images used in this study were obtained from the Osteoarthritis Initiative (OAI) database, which is 42 

available for public access at http://www.oai.ucsf.edu/. Three Datasets (A), (B) and (C) of sagittal 3D weDESS 43 

MR images of the knee featuring a high spatial-resolution (0.37x0.37mm matrix, 0.7mm slice thickness) and 44 

signal-to-noise ratio well-suited for accurate morphological analyses of the meniscus, were selected from the 45 

OAI image release 0.E.1, 1.E.1, 3.E.1 and 5.E.1. Imaging protocol and knee positioning were standardized 46 

across all subjects27. Dataset (A) consisted of MR examinations of knee pathology from 88 patients selected 47 

from the OAI baseline and 12-month image releases. The MM and LM were manually segmented in all the MR 48 

examinations of Dataset (A) and kindly provided by Imorphics (Manchester, UK). The manual segmentations 49 

were performed by a single operator trained by a musculoskeletal radiologist (Charles Hutchinson) and an 50 

expert segmenter (Mike Bowes) and had passed the Imorphics cartilage segmentation training protocol, 51 

requiring an intra-observer coefficient of variation lower than 3% on paired test images. The segmentations 52 

were reviewed by the expert segmenter. These manual segmentations, which were performed blind to the 53 

present study, were used to train and validate of our automated segmentation algorithm. Datasets (B) and (C) 54 

consisted of 22 and 129 subjects (left and right knees) selected from the OAI Progression (definite rOA) and 55 

Incidence (asymptomatic with increased risks of developing OA) cohorts at baseline, 12, 24 and 36 months. 56 

Automated segmentations of the baseline MR images from Datasets (B) and (C) were undertaken for visual 57 

assessments of the performance of the segmentation method (results provided) and exploratory data analyses 58 

on meniscal volume, subluxation and tibial coverage in a larger cohort with a wider spectrum of healthy and 59 
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pathological meniscal morphologies. Additional results of automated analyses of the menisci in the longitudinal 60 

Datasets (B) and (C) are reported as supplementary material. Relevant demographics and clinical data are 61 

provided in Table 1. 62 

[Figure 2] 63 

Automatic Menisci Segmentation 64 

 65 

The proposed automatic MR image segmentation method is based on a 3D active shape model (ASM) 66 

scheme29 which involves deforming statistical shape models (SSMs) of the MM and LM in the MR image 67 

based on a template matching procedure30,31. 68 

A 3D SSM mathematically describes the direction and the magnitude of shape variability of a training-set of 69 

triangulated surfaces29. These models are characterised by a mean-shape which changes in a plausible 70 

manner (anatomically credible) based on a set of shape-parameters (illustrated in Supplementary Fig. S1.a). 71 

In ASM-fitting schemes, SSMs are frequently used to restrain the deformation from converging towards 72 

unlikely shapes deviating excessively from typical shapes of the training-set. In this work, three separate 73 

SSMs (1. combined menisci, 2. individual MM and 3. individual LM) were trained based on the manual 74 

segmentations of Dataset (A) at baseline. These SSMs were deformed in the MR images using image-feature 75 

models30,31, which comprised 1D template intensity profiles typically surrounding the menisci in the training-set 76 

(illustrated in Supplementary Fig. S1.b). The ASM utilised these image-feature models in order to find the 77 

intensity profiles most similar to that of the template profiles in the new image to segment. Technical 78 

background regarding the generation of the models is provided in ‘Supplementary Data A’. 79 

The segmentation pipeline, detailed bellow and in Fig. 2.a, involved four steps: (1) image preprocessing, (2) 80 

ASM initialisation, (3) ASM-fitting and (4) post-processing. The method was implemented in C++ based on the 81 

Insight32 and Visualisation Toolkits33 (implementation details are provided in ‘Supplementary Table S1’). 82 

 83 

I. MR Image Preprocessing 84 

 85 

In this first stage, the MR image to segment – denoted � – was normalised to a fixed intensity range (0±200) 86 

using linear rescaling and preprocessed using a median smoothing algorithm (radius 1x1x1) in order to reduce 87 

the image noise and increase signal homogeneity within structures. 88 
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 89 

II. Affine initialisation 90 

 91 

In the initialisation stage, an average menisci surface – denoted �� – was aligned to a likely meniscus 92 

region of � based on the registration of an average knee image to �. Underlying methods utilised to generate 93 

the average knee image and menisci surface is described in 'Supplementary Data A'. The average knee 94 

image was first registered to � using an affine registration algorithm34, and the obtained transformation was 95 

propagated to the average surface, resulting in a surface �� approximately aligned with the meniscus region in 96 

�. To refine the initialisation, the meniscus region was extracted from both the average knee image and � 97 

(2mm around ��), and the registration process was repeated with the cropped images. 98 

For an individual with multiple time-point scans, the MR images were first co-registered and averaged into a 99 

subject-specific mean image using groupwise registration35, and the mean-image obtained was used for the 100 

initialisation of all the time-points. 101 

The initial pose and shape parameters of the ASM were then estimated from this obtained surface. An 102 

example of an initial segmentation obtained after this stage (by voxelising �� into segmentation masks) is 103 

provided in Fig. 2.a(II).  104 

 105 

III. Active Shape Model Fitting. 106 

 107 

The SSMs were then deformed towards the most likely shape and position in � based on the template 108 

profile matching process illustrated in Fig. 2.a (shaded area) and described in detail elsewhere30,31. 109 

Summarising, for a given point k of ��, a grey level profile ��,� longer than that of the image-feature model is 110 

extracted along the surface normal (positive and negative direction) and compared to the template profiles ��,� 111 

of the image feature model. As shown in Fig. 2.b, the template profiles ��,� are translated along the case 112 

profile ��,� and the normalised-cross-correlation � ∈ 
0,1

30,31 is computed at each position. The translation 113 

offset of the profile ��,� which maximises � is then used to translate the point k of ��	along its normal, thus 114 

deforming the surface. Once all the points of �� have been translated, the deformed surface is restrained to a 115 

bounded space representative of typical menisci shapes by either constraining the shape-parameters of the 116 

SSM or smoothing the surface. The process is then iterated until the maximum number of iteration is reached 117 
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(supplementary Table S1).  118 

Optimizing the ASM-fitting process for the segmentation of the menisci involved three parts. A combined 119 

SSM encoding the pose variability was deformed in � to refine the initial pose of the menisci. This step was 120 

performed using a 2 level Gaussian image-pyramid scheme to avoid converging towards local minima. In a 121 

second pass, individual SSMs of the MM and LM describing the local shape variability were separately 122 

deformed in � to obtain likely morphologies. SSMs were used to constrain the deformation during the 2 first 123 

stages of the fitting process29. 124 

To account for the shape variability not described by the SSMs and allow the ASMs to deform towards 125 

shapes slightly different than that of the training-set, a third pass deformed separate MM and LM ASMs in � 126 

without SSM constraints. Finally, smoothing was applied to remove noise from the deformed surface and the 127 

surface was voxelised to create the initial segmentation masks.  128 

 129 

IV. Segmentation Post-Processing 130 

 131 

To correct any small over-segmentation, a post processing classification method was applied to the menisci 132 

masks. As shown in Fig. 2.c, the tissue intensity properties of the MM and LM were estimated by a Gaussian 133 

distribution (mean µ, variance σ2), and each voxel was assigned a probability of being meniscal tissue based 134 

upon its distance to µ. Since the intensity of meniscal tissues is expected to be lower than that of the 135 

surrounding articular cartilages in the weDESS MR images, voxels featuring intensities lower than µ+σ were 136 

classified as meniscal tissue and other voxels were discarded. To account for inherent signal intensity 137 

heterogeneity and tears within the menisci, potentially excluded from the meniscal tissue due to high signal 138 

intensity, “defects” in the internal portions of the image mask were marked as unclassified outliers and treated 139 

as meniscal tissue for quantitative analyses. 140 

[Figure 3] 141 

Quantitative Analysis 142 

 143 

Based upon the segmentations and 3D reconstructions, the menisci were automatically analysed for volume, 144 

tibial coverage and subluxation parameters, which are often altered in individuals with knee rOA7-11,13-15. The 145 

volumes were computed by numerical integration of image-voxels belonging to the segmented menisci. The 146 

menisci subluxation and tibial-coverage parameters, illustrated in Fig. 3.a,b, required the identification of the 147 
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tibial bone and plateau (bone-cartilage interface), which were automatically obtained in each MR image 148 

following the method described by Fripp et al.36. The MM and LM coverage areas were calculated as the 149 

percentage of the medial and lateral tibial plateau surfaces (Fig. 3, yellow) covered by the individual menisci 150 

(Fig. 3, orange)8,14. The subluxation parameter was computed as the maximum distance between the external 151 

margin of the meniscus and that of the tibial plateau (Fig. 3.b green and red curves) when the meniscus 152 

position was ‘external’ relative to the tibial plateau, otherwise the minimum distance (signed negatively) was 153 

used8,14. 154 

 155 

 156 

Validation Strategy 157 

 158 

The automated segmentation algorithm was applied to all 88 MR images of Dataset (A) with manual 159 

segmentations at baseline (V00) and 12 month (V01) time-points and quantitatively validated using a leave-160 

one-out strategy (each case currently segmented was omitted from the training stage). The automatic and 161 

manual menisci segmentations were compared using the sensitivity, specificity, DSI26 and mean absolute 162 

surface distance37 (MASD) values as per Eq. 1: 163 

�����������	 = 	�� (�� + ��⁄ ) ∗ 100 

��� �!� ���	 = 	�� (�� + ��⁄ ) ∗ 100 

"��	 = 	2 ∗ |% ∩ '| (|%| + |'|)⁄ ∗ 100 

'%�"	 = 	 ("(%,') 	+ "(', %))/2) 

(1) 

in which TP, TN, FP, FN are the number of true positives, true negatives, false positives and false negatives, 164 

and A and M are the automatic and manual segmentation masks respectively. The sensitivity, specificity, DSI 165 

and MASD quantified the percentage of true positives, true negatives, the spatial overlap and the average 166 

forward and backward Euclidean distances (D(x,y)) between automatic and manual segmentations37. For both 167 

the MM and LM, differences in DSI values were examined using Wilcoxon rank-sum tests across rOA grades 168 

and Wilcoxon signed-rank tests between time-points (significance-level 0.05). Non-parametric tests were used 169 

due to a negative skew in the DSI distributions. 170 

Associations between meniscal parameters estimated from the automatic and manual segmentation data 171 

were investigated using the Pearson product-moment correlation coefficient38, the intraclass correlation 172 
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coefficient (ICC - two-way random single measure)39 and Bland-Altman analyses40. Coefficients above 0.75 173 

were interpreted as good, while coefficients between 0.5 and <0.75 were interpreted as moderate. To account 174 

for outliers and the negative skew of the DSI distributions, the correlation analyses were performed on Dataset 175 

(A) trimmed by 5% of the DSI extrema.  176 

Using the baseline imaging data pooled over all datasets, meniscal volume, subluxation and tibial coverage 177 

were compared for differences 1) between rOA groups (such that no(confirmed)-rOA = grade 0 or I, mild-178 

rOA=grade II and advanced-rOA=grade III-IV), 2) between medial and lateral JSN groups (grades 0, I and II) 179 

and 3) between pain-score groups (WOMAC=0, 0<WOMAC<=10 and 10<WOMAC<=20) using Wilcoxon rank-180 

sum tests adjusted for false discovery rate41 (significance-level: 0.05). 181 

All statistical analyses were performed using ‘R 3.0’. 182 

[Table 2] 183 

Results 184 

 185 

Segmentation Validation 186 

 187 

There was good spatial overlap between the manual and automated segmentations of the MM 188 

(median(95%CI) DSIV00=78.3%(75.0—78.7), DSIV01=75.3%(72.8—76.9)) and LM volumes 189 

(DSIV00=83.9%(82.1—83.9), DSIV01=83.0%(81.6—83.5)) at both time points (Table 2). For each meniscus, 190 

there were no significant differences in DSI values across the rOA grades (p>0.05 for all Wilcoxon rank-sum 191 

tests) and between V00 and V01 (Wilcoxon signed-rank tests p>0.05). Segmentations for the MM and LM in 192 

representative cases corresponding to the interquartile mean, maximum and minimum DSI are provided in 193 

Fig. 4.a,b to visualise the typically good spatial overlap between the automatic and manual approaches. 194 

Severe damage to either or both of the menisci, as shown for the MM in Fig. 4.c, resulted in segmentation 195 

difficulties and low DSI values (<=60%) in a small number of cases (15/176≈8.5% for MM and 3/176≈1.7% 196 

for LM).  197 

There were strong or moderate correlations (Fig. 5) between the manual and automated meniscal 198 

parameters at both V00 and V01 for the MM (rV00=0.80, ICCV00=0.80; rV01=0.78, ICCV01=0.78) and LM 199 

(rV00=0.91, ICCV00=0.90; rV01=0.89, ICCV01=0.88) volume, the MM (rV00=0.83, ICCV00=0.83; rV01=0.70, 200 

ICCV01=0.69) and LM (rV00=0.92, ICCV00=0.91; rV01=0.89, ICCV01=0.89) subluxation and the MM (rV00=0.82, 201 

ICCV00=0.81; rV01=0.81, ICCV01=0.79) and LM (rV00=0.83, ICCV00=0.82; rV01=0.71, ICCV01=0.70) tibial coverage. 202 
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Comparisons between the manual and automated volume data using Bland-Altman plots showed for both the 203 

MM and LM an even distribution of the differences between methods across the range of meniscal measures 204 

(no apparent funnelling effects) with a bias of (-4.45%, 6.46%), (-0.525mm, -0.266mm) and (-1.98%, -1.64%) 205 

for the (MM, LM) volume, subluxation and tibial coverage, respectively. Automatic segmentation and 206 

quantitative analysis results obtained for each patient of Datasets (A), (B) and (C) can be publicly accessed 207 

online at http://milxview.csiro.au/msk_meniscus/xplorer_studies/Public42. Observations across 208 

automated segmentations of both the MM and LM of Datasets (B) and (C) were visually comparable to those 209 

obtained and evaluated for (A), indicating an overall robustness of the method. 210 

[Figure 4/5] 211 

Quantitative Analysis 212 

 213 

 As reported in Table 3, in rOA and mJSN knees, the MM had significantly more subluxation and less tibial 214 

coverage than no-rOA/no-mJSN knees. So did the MM of advanced-rOA knees compared to mild-rOA knees. 215 

mJSN and advanced-rOA knees also had significantly greater MM volume than no-mJSN and no-rOA knees 216 

respectively. The subluxation of the MM was significantly greater in knees with advanced-rOA compared to 217 

mild-rOA knees. 218 

For the LM, knees with rOA had significantly greater meniscal volume and tibial-coverage than no-rOA/no-219 

lJSN knees. The volume of the LM was also greater in knees with lJSN. 220 

No significant differences were noted between different groups of pain score in any of the meniscal 221 

parameters. 222 

Automated segmentations of the MM and LM were also performed to obtain volume, subluxation and tibial 223 

coverage measures at baseline, 12, 24 and 36 months follow-up for the OAI Progression and Incidence 224 

datasets. At this stage descriptive data, as reported in Supplementary Table S2, have been generated with 225 

additional data input such as rOA grade and compartmental JSN progression required for downstream 226 

analyses and validation. 227 

[Table 3] 228 

Computational Time 229 

 230 

All the experiments were performed on a dual 6-core Intel Xeon Westmere X5670 (2.93GHz) workstation. 231 

Using our fully-automatic method, the mean±SD CPU time required to segment the MM and LM from an 232 
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individual MR examination was 27.2±1.8 minutes (min=24.3, max=32.3), and the time required to perform the 233 

quantitative analysis was 2.4±0.2 minutes (min=2.1, max=3.4) minutes. 234 

[Figure 6] 235 

Discussion 236 

 237 

This study is the first to successfully provide automatic segmentation and quantitative analysis of both the 238 

MM and LM from MR images of individuals with knee rOA. Leave-one-out experiments showed good spatial 239 

agreement between the manual and automated segmentations of the individual MM and LM, with overall 240 

median DSI values of 77.1% and 83.5% in analyses of knee MR examinations for individuals presenting a 241 

large spectrum of JSN, sclerotic bone and osteophytes (rOA grades II-IV). For both the MM and LM in 242 

individuals with knee rOA, our scheme may provide a good alternative to the semi-automatic method of 243 

Swanson et al.20 which performed direct segmentations of T2-Maps (more challenging to segment) and 244 

achieved a DSI of 69%. In terms of DSIs, our approach compared favourably to previous automated 245 

segmentation approaches of these structures in healthy states24 and although the mean DSI (81.9%) obtained 246 

by Zhang et al.25 slightly outperforms our current results, a direct comparison is difficult since the 247 

segmentation of individual menisci was not reported. 248 

The automatic estimation of quantitative parameters was sufficiently accurate (0.70<r<0.92) to discern 249 

meaningful cross-sectional differences in the volume, tibial-coverage and subluxation of the meniscus 250 

between groups with variable rOA characteristics. In particular, the MM showed overall greater subluxation 251 

and smaller tibial-coverage area in individuals with rOA and mJSN, concurrent with recent findings8,13-15. The 252 

LM showed a greater median volume in knees with rOA and mJSN. The tibial coverage of the LM was found 253 

significantly greater in knees with rOA (4.4% relative difference, which corroborate results from a recent study 254 

although this difference was not reported significant15), but was not significantly different between knees with 255 

and without lJSN. 256 

The good DSI values and successful identification of significant differences between groups, particularly in 257 

relation with the meniscal subluxation and tibial-coverage (eg. 0.43mm and 2.0% absolute difference detected 258 

in subluxation and tibial-coverage of the MM between rOA and no-rOA knees) which have been associated 259 

with cartilage loss3,8, suggest that the present method would be suitable to efficiently analyse and monitor the 260 

evolution meniscus morphological characteristics with OA development in large populations. The automatic 261 

method also provides opportunities for investigations into the biochemical changes of the meniscus with OA, 262 
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requiring accurate co-registration schemes (eg. Xue et al.43) to align the high-resolution MR image with the 263 

biochemical MR sequence (eg. T1ρ, T2, dGEMERIC MR). However, as with all automated methods, quality 264 

control procedures are required to detect the small number of segmentation failures. Our initial experience 265 

found web applications42 (e.g. http://milxview.csiro.au/msk_meniscus/xplorer_studies/Public) to be efficient to 266 

perform this task, although further investigations are required to ensure their effectiveness.  267 

The primary advantages of our method are: (1) it does not require any manual MR image processing, (2) it 268 

provides good segmentation of the MM and LM as separate labels, (3) it performs well on knees with rOA and 269 

visual inspections showed equivalent performance in healthy knees, (4) it readily segments torn menisci and 270 

finally (5) it does not require prior identification of the bones or articular cartilages within the knee. 271 

There are some limitations with the present research. First, the method was only evaluated on weDESS MR 272 

images acquired as part of the OAI. Further validation is required for to assess the applicability of the method 273 

on clinically focused sequences such as intermediately-weighted 2D fast-spin-echo (FSE) and 3D-FSE. 274 

Regarding the performance of the method on the OAI weDESS MR images, another possible limitation of 275 

the method was the decrease DSI values with rOA severity (for MM) and between time-points (Table 2).  The 276 

primary reason for these differences relates to the increase in meniscus shape complexity and MR signal 277 

heterogeneity associated with disease progression, which blurred the boundaries with articular-cartilages and 278 

weakened the features driving the ASM. These differences were not significant (Table 2: p>0.05 for all 279 

comparisons), suggesting that the method maintained reliable segmentations in the majority of the cases. 280 

Training the models of the segmentation algorithm using V01 yielded equivalent results, with a non-significant 281 

decrease in DSI values between time-points (Wilcoxon signed-rank test MM: p=0.11, r=0.12; LM: 0.53, 282 

r=0.05), which reduced the likelihood that this difference was induced by a strong time-point or training bias. In 283 

comparison with the segmentation of the LM, analyses of the anatomically more mobile MM presented greater 284 

challenges and a lower median DSI value was obtained. The primary cause of this was the greater variability 285 

of shapes and MR tissue-contrasts encountered in the MR images for this structure as a result of a more 286 

substantial expression of structural and biochemical alterations with OA. A median DSI of 77% (overall) still 287 

compares favourably with existing analyses of this structure in healthy states24, highlighting the potential of the 288 

current segmentation approach for automated analyses of pathological menisci. The tip of the horns and the 289 

peripheral margins mid-way along the MM and LM were the areas that segmented least accurately (Fig. 6). 290 

These results stem from the unclear demarcations between the meniscal horns and ligaments and between 291 

the peripheral edges of the meniscus and fat (Fig. 1). From the high specificity and comparatively low 292 
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sensitivity reported in Table 2, we concluded that under-segmentation was the most common segmentation 293 

error obtained. 294 

Several cases such as the MM shown in Fig. 4.c exhibited severe tissue destruction and our automated 295 

method failed in this specific instance of very advanced tissue loss. Our experience showed that these failed 296 

segmentations could be easily detected from the web applications previously mentioned, and with a failure 297 

rate (DSI<=60%) of 8.5% for MM and 1.7% for LM, we consider the method suitable for analyses of the 298 

menisci in a framework of early OA assessment. 299 

In conclusion, our automated scheme is well suited to efficiently process and analyse large prospective MR 300 

cohorts, thereby presenting opportunities to facilitate epidemiological and interventional studies into 301 

morphological changes of the meniscus. The proposed method provides good accuracy for segmentation of 302 

the MM and LM meniscus from weDESS MR images from individuals with variably severe knee rOA (overall 303 

median DSI of 77.1% for MM and 83.5% for LM). Subsequent quantitative analyses obtained Pearson 304 

correlations ranging from 0.70 to 0.92 between manual and automatic volume, subluxation and tibial-coverage 305 

of the meniscus. Cross-sectional comparisons of the MM and LM parameters from various rOA and 306 

compartmental JSN groups provided results that corroborated previous manual findings.   307 
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Figure legends 1 

 2 

Figure 1: (a) Manual segmentation of the menisci in a 3D weDESS MR image acquired in the sagittal plane 3 

(patient 9056363, female, age 57, height 168.5cm, BMI 31.8kg/m2, rOA grade III). (left) Coronal view, 4 

MM=medial meniscus, LM = lateral meniscus, FM=femur, T=tibia, C=cartilage, F=fat. (Right) Axial view, 5 

AH=anterior horn, PH = posterior horn. (b) A 3D sagittal weDESS MR image of healthy menisci demonstrating 6 

high tissue intensity homogeneity and clear demarcation between the surrounding cartilage and fat tissues in 7 

(left) coronal and (right) axial views (patient 9323403, male, age 51, height 161.8cm, BMI 27.4, rOA grade 0). 8 

(c) The menisci in a patient with moderate/severe rOA of the knee joint demonstrating “lesions” in the menisci 9 

in (left) coronal and (right) axial views (patient 9800677, male, age 65, 184.7cm, BMI 31.1kg/m2, rOA grade 10 

III). 11 

 12 

Figure 2: (a) Segmentation method flow diagram (axial view illustration; case 9056363, rOA grade III)  13 

demonstrating processing of the MM (orange) and LM (green) after affine initialisation, combined menisci ASM 14 

pose estimation, constrained MM and LM ASM fitting, MM and LM relaxation and tissue classification. 15 

Although shown in 2D, segmentation occurs in 3D. (b) Grey level profile matching. For a surface point k and 16 

associated profile ��,� of length 2rL+1 (with r =1.5 a padding ratio allowing the extraction of profiles larger than 17 

that of the image-feature-model), the template profiles ��,� of length 2L+1 are translated along ��,� and �30,31 is 18 

computed for each position. The profile and displacement maximising � describe the displacement of the point 19 

k along its normal. The green line at the centre of each profile represents the menisci surface. (c) Post-20 

processing stage for a MM with over-segmentation (green arrow) and a tear (blue arrow) visualised in the axial 21 

view. (1) Segmentation of the MM following ASM-fitting stage. (2) Tissue probability estimation within the MM 22 

(darker shades of blue denote a lower probability of meniscal tissue). (3) Tissue classification based on 23 

probability estimation. (4) Final segmentation of the MM following dilation and erosion, which allowed closure 24 

of the defect associated with the high signal intensity of the tear. 25 

 26 

Figure 3: Schematic representation of the computation of the tibial-coverage and subluxation parameters. (a) 27 

A 3D rendering of the MM and LM (displayed as semi-transparent surfaces) tibial coverage areas (orange 28 

MM.Cov, LM.Cov) on the medial and lateral tibial plateau (yellow MM.TA and LM.TA). (b) Computation of the 29 

subluxation for the MM. The red (text) and green (mext) points are the outermost points of the tibial plateau 30 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

 

(MM.TA) and the MM which, in this case, maximise the subluxation. The distance between these two points 31 

defines the subluxation parameter (blue arrow). A: anterior, P: posterior. 32 

 33 

Figure 4: Qualitative assessment between manual (green overlay) and automatic (blue overlay) meniscal 34 

segmentations viewed as per right knee. (left) 3 axial slices focused on the MM, (middle) manual 35 

segmentation, (right) automatic segmentation. In (a), from top to bottom, MM segmentation in cases situated 36 

at the interquartile mean (Case 9651690, DSI=77.6%, rOA grade III), interquartile minimum (Case 9602703, 37 

DSI=71.6%, rOA grade III), and interquartile maximum (Case 9954040, DSI=81.9%, rOA grade III). Similarly, 38 

in (b), from top to bottom, LM segmentation in cases situated at the interquartile mean (Case 9382271, 39 

DSI=83.4%, rOA grade II), interquartile minimum (Case 9368622, DSI=80.6%, rOA grade IV), and interquartile 40 

maximum (Case 9698705, DSI=85.8%, rOA grade III). (c) is an illustration of segmentation failure caused by 41 

severe truncation of the MM (Case 9311328, DSI=37.0%, rOA grade III). 42 

 43 

Figure 5: (a), (b) and (c) present the correlation and Bland-Atlman analyses performed for the MM (left, 44 

green) and LM (right, blue) volume, subluxation and tibial coverage parameters. The scatter-plots present the 45 

automatic segmentation parameters against the manual segmentation parameters, and the Bland-Altman 46 

analyses present the relative (for volume and tibial coverage) or absolute (for the subluxation) difference 47 

between automatic segmentation parameters and the manual segmentation parameters. The absolute error 48 

(expressed in mm) is used for the subluxation due to the presence of zero valued parameters. 49 

 50 

Figure 6: Mapping of the median Hausdorff Distance (maximum forward/backward distance between 51 

automatic and manual surface)37 between deformed ASM surfaces and the manual segmentations onto the 52 

menisci mean shape at V00 (top) and V01 (bottom) (all subjects from Dataset (A)). The blue and red areas 53 

characterised the smallest and largest distances to the manual segmentations. The tip of the horns and the 54 

external surface of the mid-compartment of both menisci were the areas most problematic to segment. 55 

 56 

Supplementary Figure S1: (a) The major mode of variation (strongest λ� of C) for the combined menisci 57 

SSM, MM SSM, and LM SSM, explained between -3 and +3 standard deviations from the mean-shape.  (b) 58 

An example of N grey level profiles extracted along the surface normal vectors for a given surface. In this 59 
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example, the profiles extracted along the surface normals had a length L of 12. (c) The average knee image 60 

and surface used as atlas in the affine registration (initialisation). 61 
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Table 1: Demographic data of subjects analysed from the 3 datasets used in the present study. Readings for 

the rOA grades and JSN were based on site readings performed by a certified radiologist. rOA grades (near 

Kellgren/Lawrence grade28) at baseline are defined such that 0 = normal knee, 1 = not confirmed rOA, 2 = 

definite-mild rOA, 3 = moderate rOA, 4 = severe rOA. mJSN and lJSN are defined such that a grade of 0 = no-

JSN (equivalent to Osteoarthritis Research Society International (OARSI) JSN grades 0), 1 = mild-JSN 

(equivalent to OARSI grades I-II) and 2 = severe-JSN (equivalent to OARSI grades III). The pain score is 

defined as the Western Ontario and McMaster Universities Arthritis Index (WOMAC). 

 A  B  C 

 Male Female  Male Female  Male Female 

N 45 43  12 10  43 86 

Age (yrs) 62.02±10.89 60.42±8.982  56.58±9.29 60.44±9.68  56.47±9.03 57.8 1±8.6 

Height (cm) 176.7±6.39 163.1±5.80  178.3±5.68 164.6±7.56  176.9±5.85 162.2 ±6.46 

Mass (kg) 96.31±14.76 83.67±14.87  94.54±18.04 78.14±16.36  8 6.24±14.27 75.24±14.46 

BMI (kg/m2) 30.51±3.87 31.65±5.26  29.64±4.97 28.68±4.98  27.55±4.22 28.59 ±5.27 

Pain score ([0,20]) 5.07±3.85 5.84±4.27  1.75±2.34 2.67±3.12  3.95±4.32  4.57±4.37 

Time-points 2  4*  4* 

Left and Right No  Yes  Yes** 

# Knees baseline 88  42  127 

# Total Knees 176  158  758 

rOA Grade (0;1;2;3;4) (0, 0, 15, 56, 17)  (0, 9, 17, 14, 2)  (203, 33, 10, 7, 1) 

m.JSN score (0;1;2) (16, 55, 17)  (30, 10, 2)  (240, 12, 2) 

l.JSN score  (0;1;2) (74, 14, 0)  (26, 16, 0)  (251, 3, 0) 

*30 and 104 patient knees were available at 4 Time-Points in (B) and (C), other patient were missing time-points 
** Except for 3 cases 
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Table 2: Evaluation of the accuracy (median(MD), 95% confidence-interval(CI)) of the automated segmentation 

algorithm for the MM and LM volumes after the affine initialisation, ASM-fitting and classification (final) stages 

for the MM and LM volumes at V00 and V01. Final segmentation results are reported for the overall population 

and per OA grade. 

 

V00 
Sensitivity (%) Specificity (%) DSI (%) MASD (MM)  

MD 95% CI MD 95% CI MD 95% CI MD 95% CI (p, r)* 

Medial Meniscus (V00) 

Affine 51.1 49.1-52.8 99.97 99.97-99.97 58.5 54.8-58.7 0.92 0.90-1.00  

ASM-fitting 77.8 75.5-79.3 99.97 99.97-99.98 77.6 74.0-77.9 0.51 0.49-0.61  

Final (overall) 77.1 74.7-78.4 99.98 99.97-99.98 78.3 75.0-78.7 0.49 0.46-0.58  

- OA Grade II 72.5 63.9-78.1 99.99 99.98-100.00 79.2 73.6-81.7 0.41 0.34-0.69  

- OA Grade III 78.0 75.8-79.5 99.98 99.97-99.98 78.7 74.4-79.2 0.5 0.46-0.61 p=0.72, r=0.04 

- OA Grade IV 78.3 68.6-81.3 99.97 99.96-99.98 76.9 69.5-79.3 0.51 0.46-0.70 p=0.25, r=0.21 

Lateral Meniscus (V00) 

Affine 51.0 50.4-55.4 99.97 99.97-99.97 58.9 56.2-60.7 0.86 0.82-0.94  

ASM-fitting 81.2 79.5-81.9 99.99 99.98-99.99 83.1 81.6-83.5 0.33 0.33-0.39  

Final (overall) 79.0 77.7-80.1 99.99 99.99-99.99 83.9 82.1-83.9 0.33 0.32-0.38  

- OA Grade II 75.5 71.9-78.9 99.99 99.99-99.99 82.2 79.5-84.7 0.32 0.29-0.41  

- OA Grade III 79.6 78.4-80.9 99.99 99.99-99.99 84.0 82.4-84.3 0.32 0.31-0.38 p=0.49 ,r=0.08 

- OA Grade IV 81.1 73.1-83.1 99.99 99.98-99.99 84.1 78.1-85.2 0.35 0.29-0.73 p=0.88, r=0.03 

V01 
Sensitivity (%) Specificity (%) DSI (%) MASD (MM)  

MD 95% CI MD 95% CI MD 95% CI MD 95% CI (p, r)* 

Medial Meniscus (V01) 

Affine 47.3 46.9-50.9 99.97 99.96-99.97 54.5 52.2-56.3 0.97 0.95-1.06  

ASM-fitting 78.0 76.0-79.2 99.97 99.96-99.97 74.2 71.6-75.8 0.58 0.55-0.67  

Final (overall) 77.1 75.2-78.4 99.98 99.97-99.98 75.3 72.8-76.9 0.54 0.52-0.64 p=0.07, r=0.14 

- OA Grade II 75.7 68.8-78.6 99.99 99.97-99.99 81.5 71.3-83.3 0.38 0.33-0.71  

- OA Grade III 77.4 75.2-79.5 99.97 99.96-99.97 75.1 71.6-76.6 0.58 0.53-0.69 p=0.07,r=0.21 

- OA Grade IV 78.5 71.9-79.8 99.97 99.96-99.98 74.8 68.9-78.6 0.54 0.47-0.72 p=0.13,r=0.27 

Lateral Meniscus (V01) 

Affine 49.2 48.0-51.6 99.97 99.96-99.97 55.6 53.5-57.0 0.94 0.90-0.99  

ASM-fitting 81.3 79.1-81.6 99.99 99.98-99.99 82.8 80.9-83.0 0.34 0.35-0.41  

Final (overall) 78.9 77.4-79.9 99.99 99.99-99.99 83.0 81.6-83.5 0.33 0.33-0.40 p=0.18, r=0.10 

- OA Grade II 75.3 70.3-79.3 99.99 99.99-99.99 82.4 79.1-84.8 0.33 0.30-0.47  

- OA Grade III 80.4 78.1-80.9 99.99 99.98-99.99 83.0 81.6-83.8 0.32 0.32-0.40 p=0.79,r=0.02 

- OA Grade IV 78.8 72.3-81.3 99.99 99.98-99.99 83.2 74.6-84.7 0.36 0.31-0.72 p=0.94,r=0.02 

*p-values and effect-size given in italics are the results of the Wilcoxon sum-rank tests between the DSI values of OA grade II verse the 
DSI values of OA grade III and IV. Underlined values given at time-point V01 correspond to the Wilcoxon signed-rank test results 
between the DSI values obtained at V00 and V01. 
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Table 3: Median values (MD), interquartile range (IQR), significance values and effect-sizes for MM and LM 

volume, subluxation, and tibial-coverage comparisons between knees with no-rOA, mild-rOA, and advanced-

rOA, between knees with no-JSN, mild-JSN and severe-JSN and between 3 groups of patients with increasing 

WOMAC scores ([0], ]0;10] and ]10;20]). For the LM, only knees with no-JSN or mild-JSN were available. 

MM.Vol and LM.Vol are expressed in mm3, MM.Sub and LM.Sub are expressed in mm and MM.Cov and 

LM.Cov are pressed in %. 

Radiographic OA 

 no-rOA  mild-rOA  advanced-rOA  p-value; effect-size 

 MD IQR  MD IQR  MD IQR  no-rOA vs 
mild-rOA 

no-rOA vs 
advanced-rOA 

mild-rOA vs 
advanced-rOA 

MM.Vol 1949 1465-2406  2100 1484-2678  2350  1873-2857   0.126;0.09   <0.001;0.27   0.091,0.16  

LM.Vol 1631 1386-2016  2331 1599-2854  2243  1730-2746   <0.001;0.28   <0.001;0.40   0.814,0.02  

MM.Sub 2.31  1.31-3.38  2.74  2.10-3.94  4.59  3.56-5.50    0.013;0.15   <0.001;0.54   <0.001;0.47  

LM.Sub 0.17  -0.14-0.94  0.57  0.00-1.58  0.60  0.00-1.31    0.097;0.11   0.078,0.12   0.902,0.01  

MM.Cov 45.2  42.0-48.7  42.8  39.2-46.3  38.1  35.0-43.5    0.016;0.14   <0.001;0.43   0.001,0.29  

LM.Cov 42.9  39.5-45.7  44.8  42.1-48.1  44.9  42.2-48.2    0.014;0.15   <0.001;0.20   0.865,0.015  

Medial and Lateral JSN 

 no-JSN  mild-JSN  severe-JSN  p-value; r-value 

 MD IQR  MD IQR  MD IQR  no-JSN vs 
mild-JSN 

no-JSN vs 
severe-JSN 

mild-JSN vs 
severe-JSN 

MM.Vol 1958 1472-2419  2295 1873-2825  2675  1934-3093   <0.001;0.22   0.001,0.19   0.290,0.11  

LM.Vol 1751 1449-2243  2629 1723-2887  - -   <0.001;0.22  - - 

MM.Sub 2.35  1.46-3.42  4.41  3.31-5.51  4.87  4.25-5.43    <0.001;0.44   <0.001;0.37   0.098,0.17  

LM.Sub 0.25  -0.11-1.02  0.86  0.00-1.44  - -   0.053;0.10  - - 

MM.Cov 44.5  41.3-48.3  39.3  36.5-44.8  35.3  29.8-41.1    <0.001;0.31   <0.001;0.29   0.013,0.25  

LM.Cov 43.6  40.1-46.4  45.5  40.3-48.8  - -   0.078;0.09  - - 

WOMAC Score 

 0 (n=77)  ]0;10] (n=273)  ]10;20] (n=34)  p-value; r-value 

 MD IQR  MD IQR  MD IQR  0 
vs ]0;10] 

0 
vs ]10;20] 

]0;10] 
vs ]10;20] 

MM.Vol 2017 1560-2439  2039 1502-2585  2120  1550-2543   0.822;0.03   0.822,0.05   0.822,0.01  

LM.Vol 1810 1524-2260  1752 1447-2357  1975  1462-2273   0.887;0.03   0.887,0.01   0.887,0.03  

MM.Sub 2.72  1.52-3.93  2.77  1.70-4.24  3.00  2.02-4.31    0.256;0.07   0.256,0.13   0.551,0.03  

LM.Sub 0.42  0.00-1.06  0.19  -0.12-1.01  0.70  -0.082-1.84   0.173;0.09   0.476,0.07   0.173,0.09  

MM.Cov 44.8  41.5-48.2  43.4  38.7-47.8  43.4  41.2-46.6    0.106;0.11   0.476,0.10   0.626,0.03  

LM.Cov 43.9  41.3-46.6  43.5  39.9-46.4  44.0 39.5-46.8    0.501;0.07   0.875,0.02   0.761,0.04  

no-rOA = rOA grade 0 or 1, mild-rOA = grade II, advanced-rOA = grade III-IV; MM and LM parameters were tested against medial and 
lateral JSN respectively, with grade 0 = no-JSN, 1 = mild-JSN, 2 = severe-JSN. Differences between groups were tested using Wilcoxon 
rank-sum tests, with a significance level p=0.05. P-values were adjusted for multiple comparisons using false discovery rate41. 
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Supplementary Data C: Longitudinal results 1 

Table S2. Median and interquartile range (IQR) of the automatic parameters computed for the MM and LM at 

baseline, 12, 24 and 36 months follow-up for the OAI Progression and Incidence datasets. 

Medial Meniscus 

 Baseline  12 Months  24 Months  36 Months 

 Median IQR  Median IQR  Median IQR  Median IQR 

 Volume (mm3) 

OAI Progression (B) 2291 1870-2629  2551 2012-3244  2379 2053-2906  2405 2065-2899 

OAI Incidence (C) 1884 1477-2346  1832 1395-2258  1804 1432-2279  1837 1496-2313 

 Subluxation (mm) 

OAI Progression (B) 3.26 2.40-4.13  3.51 2.37-4.61  3.77 2.29-4.59  3.94 2.62-4.77 

OAI Incidence (C) 1.96 1.17-3.10  2.04 1.24-2.88  2.19 1.22-3.07  2.12 1.15-2.98 

 Tibial Coverage (%) 

OAI Progression (B) 39.6 37.1-46.0  43 37.9-46.1  42.8 35.0-46.5  38.2 36.9-45.2 

OAI Incidence (C) 45.5 41.9-49.5  45.4 42.1-48.8  45.6 41.2-48.5  45.8 41.7-48.4 

            

Lateral Meniscus 

 Baseline 12 Months 24 Months 36 Months 

 Median IQR  Median IQR  Median IQR  Median IQR 

 Volume (mm3) 

OAI Progression (B) 3054 2707-3542  3093 2865-3456  3139 2888-3536  3095 2846-3463 

OAI Incidence (C) 1524 1347-1918  1534 1334-1974  1542 1319-1944  1609 1353-2002 

 Subluxation (mm) 

OAI Progression (B) 0.82 0.094-1.48  0.86 0.29-1.73  0.91 0.22-1.37  0.76 0.00-1.67 

OAI Incidence (C) 0.25 -0.097-0.92  0.19 -0.17-1.22  0.36 -0.029-1.15  0.2 -0.043-1.18 

 Tibial Coverage (%) 

OAI Progression (B) 45.7 42.2-48.6  46.3 41.8-48.3  46 43.6-49.7  44.4 41.7-47.9 

OAI Incidence (C) 43 40.0-45.5  43.2 40.2-46.5  42.9 40.2-46.8  43.7 39.9-46.2 
 

 2 

 3 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

1 

 

Supplementary Data B: Algorithm Parameters 1 

 2 

Table S1. ASM-fitting implementation parameters. The segmentation of all subjects utilised the same 

parameters, which have been tuned based on training and observations. 
 

Fitting stage Description 
SSM # 

of modes 

SSM deviation 

from  �̅ 

Profile length 

(2L+1) 

Profile 

spacing 

Fitting 

Iterations 

Constraint 

type 

(1) Combined 

menisci 

ASM-fitting* 

Pyramid 

level 1* 
4 ±2.0SD 2x30+1 = 61 ≈0.36mm 10 SSM 

Pyramid 

level 2* 
4 ±2.0SD 2x12+1 = 25 ≈0.18mm 20 SSM 

(2) Individual MM-

LM 

ASM-fitting 

MM 35 ±1.0SD 2x8+1=16 ≈0.18mm 25 SSM 

LM 35 ±3.0SD 2x8+1=16 ≈0.18mm 120 SSM 

(3) Individual MM-

LM 

ASM-relaxation 

MM NA** NA** 2x20+1=41 ≈0.18mm 10 
Smoothing 

(15 it) 

LM NA** NA** 2x12+1=25 ≈0.18mm 10 
Smoothing 

(15 it) 

* Performed using a 2 level Gaussian image pyramid (Level 1:0.729x0.729x1.397mm; Level 2: 0.365x0.365x0.698mm) 3 

**No SSM utilised for the relaxation 4 
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Supplementary Data A: Background method: training 1 

 2 

From Dataset (A) at baseline, 85 weDESS MR examinations and associated manual MM and LM 3 

segmentations were selected to train our SSMs and image-feature models. Three patients exhibiting a 4 

destruction of more than 70% of the MM were excluded from the training to achieve higher statistical 5 

relevance. The method utilised to train the models was performed independently from the segmentation and 6 

involved 3 major stages: (1) statistical shape model training, (2) image-feature model training, and (3) affine 7 

average atlas image and surface training. 8 

 9 

Statistical shape modelling 10 

 11 

In this work SSMs of the MM, LM, and combined MM-LM were built from the initial dataset of manual 12 

segmentations following the method outlined by Cootes et al.29.  MM and LM surfaces were reconstructed as 13 

3D surfaces using the marching cube algorithm47 and a set of N=85 menisci surfaces � =14 

���, … , ���	
	was obtained. In M each �� = 
��� , ��� , ��� , … , ���� , ���� , ���� � represented a vector of ni 3D points. 15 

Prior to statistical training, SSMs require point-wise correspondences to be established across all the surfaces. 16 

These were obtained by registering non-rigidly the MM and LM of M0 onto all the other Mi using the 17 

Expectation Maximisation Iterative Closest Point algorithm48 (EM-ICP). Each �� ∈ � was then expressed as a 18 

uni-dimensional vector of 3n components as defined in Eq. 3: 19 

 20 

�� = (��� , ��� , ��� , … , ��� , ��� , ��� )�						,			� = 0, … , � − 1 (3) 

 21 

in which k = 	 
x� , y� , z� � were the coordinates of the k#$ point on the surface �� and n the number of points in 22 

all the training surfaces. Absolute correspondences across � allowed the optimal shape alignment via 23 

Procrustes analysis49, and the definition of a point distribution model (PDM). The mean shape �̅ and the 24 

3nx3n covariance matrix C of the training set were computed from the PDM using Eq. (4): 25 

 26 

 27 
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�̅ = 	 1�	& ��
�'�

�(�
											 , )*+	,						, = 	 1� &(�� −	�̅)(�� −	�)---�

�'�

�(�
		 (4) 

 28 

The eigenvectors .	 = (/ = 1,… ,3*) and eigenvalues λ2 ∈ λ	 of C described the direction and the 29 

magnitude of the menisci shape variability across the atlas. Selecting the t largest λ2 allowed to model the 30 

most meaningful variations of the menisci while discarding variations associated to noise. Using standard 31 

principal component analysis50, each ��   was then described as a weighted sum of �̅ and the t major 32 

eigenvectors, as expressed in Eq. 5. 33 

 34 

��∗ =	�̅ + 	56 (5) 

 35 

in which 5 = (.	 ….#) was the matrix of the t major eigenvectors, and 6 = (6	 …6#)� a vector of shape 36 

parameters. Hence, varying the values of b in an acceptable range allowed to generate likely meniscus 37 

shapes in an allowable shape domain. In this work, SSMs were further optimised by repeating the EM-ICP 38 

registration process using �̅	 instead of ��	as initial registration surface. 39 

As illustrated in Fig. S1a, the combined menisci SSM described the positional variability of the MM and LM, 40 

and individual MM and LM SSMs characterised the local variability. 41 

 42 

[Suggestion supplementary Figure S1] 43 

 44 

Image-feature model 45 

 46 

The image-feature models used to drive the deformation of the SSMs were composed of the tissue intensity 47 

profiles surrounding the menisci in the training-set30,31. They provided priors on the intensity profiles likely to be 48 

found at each point of the menisci, and were generated from the pre-processed MRI using the surfaces ��. For 49 

each �� and each point  / = 	 
�2� , �2� , �2� � 	∈ ��, a one dimensional intensity profile 5�,2 of length L and spacing 50 

s was extracted along the surface normal in the positive and negative direction, and saved in the model. 51 

Separate image-feature models were generated for the MM, LM combined MM-LM, each containing nx85 52 
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likely menisci profiles of length 2L+1 (corresponding to the PDM). An illustration of grey level profiles extracted 53 

for N points of a given surface is provided on Fig. S1.b.  54 

 55 

Affine average atlas image and surface 56 

 57 

Average atlases have been shown to increase generalisability and accuracy of registration schemes. In this 58 

work, affine average atlas image and surface accounting for the population pose variability and morphology 59 

were generated and used to robustly initialise the ASM-fitting stage. They were obtained by registering affinely 60 

the pre-processed images to a common image and averaging the results into a ‘knee average image. The 61 

affine transformations obtained were then propagated to the respective surfaces ��   and the mean shape (MM 62 

and LM) was calculated in the atlas space using Eq. 4. The average atlas image and surface are illustrated in 63 

Fig. S1.c. 64 


