7 research outputs found

    Exploiting Inherent Characteristic of Reversible Circuits for Faster Combinational Equivalence Checking

    Get PDF
    Reversible circuits implement invertible logic functions. They are of great interest to cryptography, coding theory, interconnect design, computer graphics, quantum computing, and many other fields. As for conventional circuits, checking the combinational equivalence of two reversible circuits is an important but difficult (coNP-complete) problem. In this work, we present a new approach for solving this problem significantly faster than the state-of-the-art. For this purpose, we exploit inherent characteristics of reversible computation, namely bi-directional (invertible) execution and the XOR-richness of reversible circuits. Bi-directional execution allows us to create an identity miter out of two reversible circuits to be verified, which naturally encodes the equivalence checking problem in the reversible domain. Then, the abundant presence of XOR operations in the identity miter enables an efficient problem mapping into XOR-CNF satisfiability. The resulting XOR-CNF formulas are eventually more compact than pure CNF formulas and potentially easier to solve. As previously anticipated, experimental results show that our equivalence checking methodology is more than one order of magnitude faster, on average, than the state-of-the-art solution based on established CNF-formulation and standard SAT solvers

    HDL-based Synthesis of Reversible Circuits : A Scalable Design Approach

    Get PDF
    Reversible computing is a promising research field due to its applications in several emerging technologies. Accordingly, several approaches for the design of reversible circuits have been introduced. Hardware Description Languages approach scales better than other methodologies, however, its main drawback is substantial amounts of additional circuit lines. This dissertation is an important step towards an elaborated scalable design flow of reversible circuits. In which, HDL-based design of reversible circuit is optimised, with line-awareness considered as the main objective. A line-aware programming style for a dedicated reversible hardware description language SyReC is proposed. Another contribution is a line-aware computation of HDL expressions. Reversible circuits' synthesis from a conventional hardware description language (VHDL) is examined. Finally, syntactical extensions to the dedicated hardware description language SyReC are suggested

    Automatic design of low-power encoders using reversible circuit synthesis

    No full text

    New Data Structures and Algorithms for Logic Synthesis and Verification

    Get PDF
    The strong interaction between Electronic Design Automation (EDA) tools and Complementary Metal-Oxide Semiconductor (CMOS) technology contributed substantially to the advancement of modern digital electronics. The continuous downscaling of CMOS Field Effect Transistor (FET) dimensions enabled the semiconductor industry to fabricate digital systems with higher circuit density at reduced costs. To keep pace with technology, EDA tools are challenged to handle both digital designs with growing functionality and device models of increasing complexity. Nevertheless, whereas the downscaling of CMOS technology is requiring more complex physical design models, the logic abstraction of a transistor as a switch has not changed even with the introduction of 3D FinFET technology. As a consequence, modern EDA tools are fine tuned for CMOS technology and the underlying design methodologies are based on CMOS logic primitives, i.e., negative unate logic functions. While it is clear that CMOS logic primitives will be the ultimate building blocks for digital systems in the next ten years, no evidence is provided that CMOS logic primitives are also the optimal basis for EDA software. In EDA, the efficiency of methods and tools is measured by different metrics such as (i) the result quality, for example the performance of a digital circuit, (ii) the runtime and (iii) the memory footprint on the host computer. With the aim to optimize these metrics, the accordance to a specific logic model is no longer important. Indeed, the key to the success of an EDA technique is the expressive power of the logic primitives handling and solving the problem, which determines the capability to reach better metrics. In this thesis, we investigate new logic primitives for electronic design automation tools. We improve the efficiency of logic representation, manipulation and optimization tasks by taking advantage of majority and biconditional logic primitives. We develop synthesis tools exploiting the majority and biconditional expressiveness. Our tools show strong results as compared to state-of-the-art academic and commercial synthesis tools. Indeed, we produce the best results for several public benchmarks. On top of the enhanced synthesis power, our methods are the natural and native logic abstraction for circuit design in emerging nanotechnologies, where majority and biconditional logic are the primitive gates for physical implementation. We accelerate formal methods by (i) studying properties of logic circuits and (ii) developing new frameworks for logic reasoning engines. We prove non-trivial dualities for the property checking problem in logic circuits. Our findings enable sensible speed-ups in solving circuit satisfiability. We develop an alternative Boolean satisfiability framework based on majority functions. We prove that the general problem is still intractable but we show practical restrictions that can be solved efficiently. Finally, we focus on reversible logic where we propose a new equivalence checking approach. We exploit the invertibility of computation and the functionality of reversible gates in the formulation of the problem. This enables one order of magnitude speed up, as compared to the state-of-the-art solution. We argue that new approaches to solve EDA problems are necessary, as we have reached a point of technology where keeping pace with design goals is tougher than ever
    corecore