19,449 research outputs found

    Requirements for Information Extraction for Knowledge Management

    Get PDF
    Knowledge Management (KM) systems inherently suffer from the knowledge acquisition bottleneck - the difficulty of modeling and formalizing knowledge relevant for specific domains. A potential solution to this problem is Information Extraction (IE) technology. However, IE was originally developed for database population and there is a mismatch between what is required to successfully perform KM and what current IE technology provides. In this paper we begin to address this issue by outlining requirements for IE based KM

    A Semantic-Agent Framework for PaaS Interoperability

    Get PDF
    Suchismita Hoare, Na Helian, and Nathan Baddoo, 'A Semantic-Agent Framework for PaaS Interoperability', in Proceedings of the The IEEE International Conference on Cloud and Big Data Computing, Toulouse, France, 18-21, July 2016. DOI: 10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0126 © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Cloud Platform as a Service (PaaS) is poised for a wider adoption by its relevant stakeholders, especially Cloud application developers. Despite this, the service model is still plagued with several adoption inhibitors, one of which is lack of interoperability between proprietary application infrastructure services of public PaaS solutions. Although there is some progress in addressing the general PaaS interoperability issue through various devised solutions focused primarily on API compatibility and platform-agnostic application design models, interoperability specific to differentiated services provided by the existing public PaaS providers and the resultant disparity owing to the offered services’ semantics has not been addressed effectively, yet. The literature indicates that this dimension of PaaS interoperability is awaiting evolution in the state-of-the-art. This paper proposes the initial system design of a PaaS interoperability (IntPaaS) framework to be developed through the integration of semantic and agent technologies to enable transparent interoperability between incompatible PaaS services. This will involve uniform description through semantic annotation of PaaS provider services utilizing the OWL-S ontology, creating a knowledgebase that enables software agents to automatically search for suitable services to support Cloud-based Greenfield application development. The rest of the paper discusses the identified research problem along with the proposed solution to address the issue.Submitted Versio

    Situational Enterprise Services

    Get PDF
    The ability to rapidly find potential business partners as well as rapidly set up a collaborative business process is desirable in the face of market turbulence. Collaborative business processes are increasingly dependent on the integration of business information systems. Traditional linking of business processes has a large ad hoc character. Implementing situational enterprise services in an appropriate way will deliver the business more flexibility, adaptability and agility. Service-oriented architectures (SOA) are rapidly becoming the dominant computing paradigm. It is now being embraced by organizations everywhere as the key to business agility. Web 2.0 technologies such as AJAX on the other hand provide good user interactions for successful service discovery, selection, adaptation, invocation and service construction. They also balance automatic integration of services and human interactions, disconnecting content from presentation in the delivery of the service. Another Web technology, such as semantic Web, makes automatic service discovery, mediation and composition possible. Integrating SOA, Web 2.0 Technologies and Semantic Web into a service-oriented virtual enterprise connects business processes in a much more horizontal fashion. To be able run these services consistently across the enterprise, an enterprise infrastructure that provides enterprise architecture and security foundation is necessary. The world is constantly changing. So does the business environment. An agile enterprise needs to be able to quickly and cost-effectively change how it does business and who it does business with. Knowing, adapting to diffident situations is an important aspect of today’s business environment. The changes in an operating environment can happen implicitly and explicitly. The changes can be caused by different factors in the application domain. Changes can also happen for the purpose of organizing information in a better way. Changes can be further made according to the users' needs such as incorporating additional functionalities. Handling and managing diffident situations of service-oriented enterprises are important aspects of business environment. In the chapter, we will investigate how to apply new Web technologies to develop, deploy and executing enterprise services

    Ontology-assisted database integration to support natural language processing and biomedical data-mining

    Get PDF
    Successful biomedical data mining and information extraction require a complete picture of biological phenomena such as genes, biological processes, and diseases; as these exist on different levels of granularity. To realize this goal, several freely available heterogeneous databases as well as proprietary structured datasets have to be integrated into a single global customizable scheme. We will present a tool to integrate different biological data sources by mapping them to a proprietary biomedical ontology that has been developed for the purposes of making computers understand medical natural language

    Advanced Knowledge Technologies at the Midterm: Tools and Methods for the Semantic Web

    Get PDF
    The University of Edinburgh and research sponsors are authorised to reproduce and distribute reprints and on-line copies for their purposes notwithstanding any copyright annotation hereon. The views and conclusions contained herein are the author’s and shouldn’t be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of other parties.In a celebrated essay on the new electronic media, Marshall McLuhan wrote in 1962:Our private senses are not closed systems but are endlessly translated into each other in that experience which we call consciousness. Our extended senses, tools, technologies, through the ages, have been closed systems incapable of interplay or collective awareness. Now, in the electric age, the very instantaneous nature of co-existence among our technological instruments has created a crisis quite new in human history. Our extended faculties and senses now constitute a single field of experience which demands that they become collectively conscious. Our technologies, like our private senses, now demand an interplay and ratio that makes rational co-existence possible. As long as our technologies were as slow as the wheel or the alphabet or money, the fact that they were separate, closed systems was socially and psychically supportable. This is not true now when sight and sound and movement are simultaneous and global in extent. (McLuhan 1962, p.5, emphasis in original)Over forty years later, the seamless interplay that McLuhan demanded between our technologies is still barely visible. McLuhan’s predictions of the spread, and increased importance, of electronic media have of course been borne out, and the worlds of business, science and knowledge storage and transfer have been revolutionised. Yet the integration of electronic systems as open systems remains in its infancy.Advanced Knowledge Technologies (AKT) aims to address this problem, to create a view of knowledge and its management across its lifecycle, to research and create the services and technologies that such unification will require. Half way through its sixyear span, the results are beginning to come through, and this paper will explore some of the services, technologies and methodologies that have been developed. We hope to give a sense in this paper of the potential for the next three years, to discuss the insights and lessons learnt in the first phase of the project, to articulate the challenges and issues that remain.The WWW provided the original context that made the AKT approach to knowledge management (KM) possible. AKT was initially proposed in 1999, it brought together an interdisciplinary consortium with the technological breadth and complementarity to create the conditions for a unified approach to knowledge across its lifecycle. The combination of this expertise, and the time and space afforded the consortium by the IRC structure, suggested the opportunity for a concerted effort to develop an approach to advanced knowledge technologies, based on the WWW as a basic infrastructure.The technological context of AKT altered for the better in the short period between the development of the proposal and the beginning of the project itself with the development of the semantic web (SW), which foresaw much more intelligent manipulation and querying of knowledge. The opportunities that the SW provided for e.g., more intelligent retrieval, put AKT in the centre of information technology innovation and knowledge management services; the AKT skill set would clearly be central for the exploitation of those opportunities.The SW, as an extension of the WWW, provides an interesting set of constraints to the knowledge management services AKT tries to provide. As a medium for the semantically-informed coordination of information, it has suggested a number of ways in which the objectives of AKT can be achieved, most obviously through the provision of knowledge management services delivered over the web as opposed to the creation and provision of technologies to manage knowledge.AKT is working on the assumption that many web services will be developed and provided for users. The KM problem in the near future will be one of deciding which services are needed and of coordinating them. Many of these services will be largely or entirely legacies of the WWW, and so the capabilities of the services will vary. As well as providing useful KM services in their own right, AKT will be aiming to exploit this opportunity, by reasoning over services, brokering between them, and providing essential meta-services for SW knowledge service management.Ontologies will be a crucial tool for the SW. The AKT consortium brings a lot of expertise on ontologies together, and ontologies were always going to be a key part of the strategy. All kinds of knowledge sharing and transfer activities will be mediated by ontologies, and ontology management will be an important enabling task. Different applications will need to cope with inconsistent ontologies, or with the problems that will follow the automatic creation of ontologies (e.g. merging of pre-existing ontologies to create a third). Ontology mapping, and the elimination of conflicts of reference, will be important tasks. All of these issues are discussed along with our proposed technologies.Similarly, specifications of tasks will be used for the deployment of knowledge services over the SW, but in general it cannot be expected that in the medium term there will be standards for task (or service) specifications. The brokering metaservices that are envisaged will have to deal with this heterogeneity.The emerging picture of the SW is one of great opportunity but it will not be a wellordered, certain or consistent environment. It will comprise many repositories of legacy data, outdated and inconsistent stores, and requirements for common understandings across divergent formalisms. There is clearly a role for standards to play to bring much of this context together; AKT is playing a significant role in these efforts. But standards take time to emerge, they take political power to enforce, and they have been known to stifle innovation (in the short term). AKT is keen to understand the balance between principled inference and statistical processing of web content. Logical inference on the Web is tough. Complex queries using traditional AI inference methods bring most distributed computer systems to their knees. Do we set up semantically well-behaved areas of the Web? Is any part of the Web in which semantic hygiene prevails interesting enough to reason in? These and many other questions need to be addressed if we are to provide effective knowledge technologies for our content on the web

    Updates in metabolomics tools and resources: 2014-2015

    Get PDF
    Data processing and interpretation represent the most challenging and time-consuming steps in high-throughput metabolomic experiments, regardless of the analytical platforms (MS or NMR spectroscopy based) used for data acquisition. Improved machinery in metabolomics generates increasingly complex datasets that create the need for more and better processing and analysis software and in silico approaches to understand the resulting data. However, a comprehensive source of information describing the utility of the most recently developed and released metabolomics resources—in the form of tools, software, and databases—is currently lacking. Thus, here we provide an overview of freely-available, and open-source, tools, algorithms, and frameworks to make both upcoming and established metabolomics researchers aware of the recent developments in an attempt to advance and facilitate data processing workflows in their metabolomics research. The major topics include tools and researches for data processing, data annotation, and data visualization in MS and NMR-based metabolomics. Most in this review described tools are dedicated to untargeted metabolomics workflows; however, some more specialist tools are described as well. All tools and resources described including their analytical and computational platform dependencies are summarized in an overview Table
    • 

    corecore