216,330 research outputs found

    Formalization and Validation of Safety-Critical Requirements

    Full text link
    The validation of requirements is a fundamental step in the development process of safety-critical systems. In safety critical applications such as aerospace, avionics and railways, the use of formal methods is of paramount importance both for requirements and for design validation. Nevertheless, while for the verification of the design, many formal techniques have been conceived and applied, the research on formal methods for requirements validation is not yet mature. The main obstacles are that, on the one hand, the correctness of requirements is not formally defined; on the other hand that the formalization and the validation of the requirements usually demands a strong involvement of domain experts. We report on a methodology and a series of techniques that we developed for the formalization and validation of high-level requirements for safety-critical applications. The main ingredients are a very expressive formal language and automatic satisfiability procedures. The language combines first-order, temporal, and hybrid logic. The satisfiability procedures are based on model checking and satisfiability modulo theory. We applied this technology within an industrial project to the validation of railways requirements

    Tools for producing formal specifications : a view of current architectures and future directions

    Get PDF
    During the last decade, one important contribution towards requirements engineering has been the advent of formal specification languages. They offer a well-defined notation that can improve consistency and avoid ambiguity in specifications. However, the process of obtaining formal specifications that are consistent with the requirements is itself a difficult activity. Hence various researchers are developing systems that aid the transition from informal to formal specifications. The kind of problems tackled and the contributions made by these proposed systems are very diverse. This paper brings these studies together to provide a vision for future architectures that aim to aid the transition from informal to formal specifications. The new architecture, which is based on the strengths of existing studies, tackles a number of key issues in requirements engineering such as identifying ambiguities, incompleteness, and reusability. The paper concludes with a discussion of the research problems that need to be addressed in order to realise the proposed architecture

    Change Impact Analysis for SysML Requirements Models based on Semantics of Trace Relations

    Get PDF
    Change impact analysis is one of the applications of requirements traceability in software engineering community. In this paper, we focus on requirements and requirements relations from traceability perspective. We provide formal definitions of the requirements relations in SysML for change impact analysis. Our approach aims at keeping the model synchronized with what stakeholders want to be modeled, and possibly implemented as well, which we called as the domain. The differences between the domain and model are defined as external inconsistencies. The inconsistencies are propagated for the whole model by using the formalization of relations, and mapped to proposed model changes. We provide tool support which is a plug-in of the commercial visual software modeler BluePrint

    A Systematic Review of Tracing Solutions in Software Product Lines

    Get PDF
    Software Product Lines are large-scale, multi-unit systems that enable massive, customized production. They consist of a base of reusable artifacts and points of variation that provide the system with flexibility, allowing generating customized products. However, maintaining a system with such complexity and flexibility could be error prone and time consuming. Indeed, any modification (addition, deletion or update) at the level of a product or an artifact would impact other elements. It would therefore be interesting to adopt an efficient and organized traceability solution to maintain the Software Product Line. Still, traceability is not systematically implemented. It is usually set up for specific constraints (e.g. certification requirements), but abandoned in other situations. In order to draw a picture of the actual conditions of traceability solutions in Software Product Lines context, we decided to address a literature review. This review as well as its findings is detailed in the present article.Comment: 22 pages, 9 figures, 7 table

    Automatic assembly design project 1968/9 :|breport of economic planning committee

    Get PDF
    Investigations into automatic assembly systems have been carried out. The conclusions show the major features to be considered by a company operating the machine to assemble the contact block with regard to machine output and financial aspects. The machine system has been shown to be economically viable for use under suitable conditions, but the contact block is considered to be unsuitable for automatic assembly. Data for machine specification, reliability and maintenance has been provided

    An Institutional Framework for Heterogeneous Formal Development in UML

    Get PDF
    We present a framework for formal software development with UML. In contrast to previous approaches that equip UML with a formal semantics, we follow an institution based heterogeneous approach. This can express suitable formal semantics of the different UML diagram types directly, without the need to map everything to one specific formalism (let it be first-order logic or graph grammars). We show how different aspects of the formal development process can be coherently formalised, ranging from requirements over design and Hoare-style conditions on code to the implementation itself. The framework can be used to verify consistency of different UML diagrams both horizontally (e.g., consistency among various requirements) as well as vertically (e.g., correctness of design or implementation w.r.t. the requirements)
    • …
    corecore