36 research outputs found

    Automatic Crack Detection in Built Infrastructure Using Unmanned Aerial Vehicles

    Full text link
    This paper addresses the problem of crack detection which is essential for health monitoring of built infrastructure. Our approach includes two stages, data collection using unmanned aerial vehicles (UAVs) and crack detection using histogram analysis. For the data collection, a 3D model of the structure is first created by using laser scanners. Based on the model, geometric properties are extracted to generate way points necessary for navigating the UAV to take images of the structure. Then, our next step is to stick together those obtained images from the overlapped field of view. The resulting image is then clustered by histogram analysis and peak detection. Potential cracks are finally identified by using locally adaptive thresholds. The whole process is automatically carried out so that the inspection time is significantly improved while safety hazards can be minimised. A prototypical system has been developed for evaluation and experimental results are included.Comment: In proceeding of The 34th International Symposium on Automation and Robotics in Construction (ISARC), pp. 823-829, Taipei, Taiwan, 201

    Road Crack Detection Using Deep Convolutional Neural Network and Adaptive Thresholding

    Full text link
    Crack is one of the most common road distresses which may pose road safety hazards. Generally, crack detection is performed by either certified inspectors or structural engineers. This task is, however, time-consuming, subjective and labor-intensive. In this paper, we propose a novel road crack detection algorithm based on deep learning and adaptive image segmentation. Firstly, a deep convolutional neural network is trained to determine whether an image contains cracks or not. The images containing cracks are then smoothed using bilateral filtering, which greatly minimizes the number of noisy pixels. Finally, we utilize an adaptive thresholding method to extract the cracks from road surface. The experimental results illustrate that our network can classify images with an accuracy of 99.92%, and the cracks can be successfully extracted from the images using our proposed thresholding algorithm.Comment: 6 pages, 8 figures, 2019 IEEE Intelligent Vehicles Symposiu

    On the suitability of light field imaging for road surface crack detection

    Get PDF
    During traditional road surveys, inspectors capture images of pavement surface using cameras that produce 2D images, which can then be automatically processed to get a road surface condition assessment. In this paper the use of a light field imaging sensor is proposed, notably the Lytro Illum camera, to explore whether the richer information captured by this imaging sensor provides additional cues useful to improve the automatic detection of road surface cracks. The preliminary results obtained indicate the interest in further exploring the disparity information captured by the light field sensor

    Road Damage Detection Acquisition System based on Deep Neural Networks for Physical Asset Management

    Full text link
    Research on damage detection of road surfaces has been an active area of re-search, but most studies have focused so far on the detection of the presence of damages. However, in real-world scenarios, road managers need to clearly understand the type of damage and its extent in order to take effective action in advance or to allocate the necessary resources. Moreover, currently there are few uniform and openly available road damage datasets, leading to a lack of a common benchmark for road damage detection. Such dataset could be used in a great variety of applications; herein, it is intended to serve as the acquisition component of a physical asset management tool which can aid governments agencies for planning purposes, or by infrastructure mainte-nance companies. In this paper, we make two contributions to address these issues. First, we present a large-scale road damage dataset, which includes a more balanced and representative set of damages. This dataset is composed of 18,034 road damage images captured with a smartphone, with 45,435 in-stances road surface damages. Second, we trained different types of object detection methods, both traditional (an LBP-cascaded classifier) and deep learning-based, specifically, MobileNet and RetinaNet, which are amenable for embedded and mobile and implementations with an acceptable perfor-mance for many applications. We compare the accuracy and inference time of all these models with others in the state of the art
    corecore