214,354 research outputs found

    A hybrid approach to conjunctive partial evaluation of logic programs

    Full text link
    Conjunctive partial deduction is a well-known technique for the partial evaluation of logic programs. The original formulation follows the so called online approach where all termination decisions are taken on-the-fly. In contrast, offline partial evaluators first analyze the source program and produce an annotated version so that the partial evaluation phase should only follow these annotations to ensure the termination of the process. In this work, we introduce a lightweight approach to conjunctive partial deduction that combines some of the advantages of both online and offline styles of partial evaluation. © 2011 Springer-Verlag.This work has been partially supported by the Spanish Ministerio de Ciencia e Innovación under grant TIN2008-06622-C03-02 and by the Generalitat Valenciana under grant ACOMP/2010/042.Vidal Oriola, GF. (2011). A hybrid approach to conjunctive partial evaluation of logic programs. En Logic-Based Program Synthesis and Transformation. Springer Verlag (Germany). 6564:200-214. https://doi.org/10.1007/978-3-642-20551-4_13S2002146564Ben-Amram, A., Codish, M.: A SAT-Based Approach to Size Change Termination with Global Ranking Functions. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 218–232. Springer, Heidelberg (2007)Bruynooghe, M., De Schreye, D., Martens, B.: A General Criterion for Avoiding Infinite Unfolding during Partial Deduction of Logic Programs. In: Saraswat, V., Ueda, K. (eds.) Proc. 1991 Int’l Symp. on Logic Programming, pp. 117–131 (1991)Christensen, N.H., Glück, R.: Offline Partial Evaluation Can Be as Accurate as Online Partial Evaluation. ACM Transactions on Programming Languages and Systems 26(1), 191–220 (2004)Codish, M., Taboch, C.: A Semantic Basis for the Termination Analysis of Logic Programs. Journal of Logic Programming 41(1), 103–123 (1999)De Schreye, D., Glück, R., Jørgensen, J., Leuschel, M., Martens, B., Sørensen, M.H.: Conjunctive Partial Deduction: Foundations, Control, Algorihtms, and Experiments. Journal of Logic Programming 41(2&3), 231–277 (1999)Hruza, J., Stepánek, P.: Speedup of logic programs by binarization and partial deduction. TPLP 4(3), 355–380 (2004)Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program Generation. Prentice-Hall, Englewood Cliffs (1993)Leuschel, M.: Homeomorphic Embedding for Online Termination of Symbolic Methods. In: Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.) The Essence of Computation. LNCS, vol. 2566, pp. 379–403. Springer, Heidelberg (2002)Leuschel, M.: The DPPD (Dozens of Problems for Partial Deduction) Library of Benchmarks (2007), http://www.ecs.soton.ac.uk/~mal/systems/dppd.htmlLeuschel, M., Elphick, D., Varea, M., Craig, S., Fontaine, M.: The Ecce and Logen Partial Evaluators and Their Web Interfaces. In: Proc. of PEPM 2006, pp. 88–94. IBM Press (2006)Leuschel, M., Vidal, G.: Fast Offline Partial Evaluation of Large Logic Programs. In: Hanus, M. (ed.) LOPSTR 2008. LNCS, vol. 5438, pp. 119–134. Springer, Heidelberg (2009)Lloyd, J.W., Shepherdson, J.C.: Partial Evaluation in Logic Programming. Journal of Logic Programming 11, 217–242 (1991)Somogyi, Z.: A System of Precise Modes for Logic Programs. In: Shapiro, E.Y. (ed.) Proc. of Third Int’l Conf. on Logic Programming, pp. 769–787. The MIT Press, Cambridge (1986

    Supervising Offline Partial Evaluation of Logic Programs using Online Techniques

    No full text
    A major impediment for more widespread use of offline partial evaluation is the difficulty of obtaining and maintaining annotations for larger, realistic programs. Existing automatic binding-time analyses still only have limited applicability and annotations often have to be created or improved and maintained by hand, leading to errors. We present a technique to help overcome this problem by using online control techniques which supervise the specialisation process in order to help the development and maintenance of correct annotations by identifying errors. We discuss an implementation in the Logen system and show on a series of examples that this approach is effective: very few false alarms were raised while infinite loops were detected quickly. We also present the integration of this technique into a web interface, which highlights problematic annotations directly in the source code. A method to automatically fix incorrect annotations is presented, allowing the approach to be also used as a pragmatic binding time analysis. Finally we show how our method can be used for efficiently locating built-in errors in Prolog source code

    PARTIAL COORDINATION: A PRELIMINARY EVALUATION AND FAILURE ANALYSIS

    Get PDF
    Partial coordination is a new method for cataloging documents for subject access. It is especially designed to enhance the precision of document searches in online environments. This paper reports a preliminary evaluation of partial coordination which shows promising results compared with full text retrieval. We also report the difficulties in empirically evaluating the effectiveness of automatic full-text retrieval in contrast to mixed methods such as partial coordination which combine human cataloging with computerized retrieval. Based on our study we propose research in this area will substantially benefit from a common framework for failure analysis and a common data set. This will allow information retrieval researchers adapting "library style" cataloging to large electronic document collections, as well as those developing automated or mixed methods, to directly compare their proposals for indexing and retrieval. This paper concludes by suggesting guidelines for constructing such a testbed.Information Systems Working Papers Serie

    Offline Specialisation in Prolog Using a Hand-Written Compiler Generator

    No full text
    The so called "cogen approach" to program specialisation, writing a compiler generator instead of a specialiser, has been used with considerable success in partial evaluation of both functional and imperative languages. This paper demonstrates that the "cogen" approach is also applicable to the specialisation of logic programs (called partial deduction when applied to pure logic programs) and leads to effective specialisers. Moreover, using good binding-time annotations, the speed-ups of the specialised programs are comparable to the speed-ups obtained with online specialisers. The paper first develops a generic approach to offline partial deduction and then a specific offline partial deduction method, leading to the offline system LIX for pure logic programs. While this is a usable specialiser by itself, its specialisation strategy is used to develop the "cogen" system LOGEN. Given a program, a specification of what inputs will be static, and an annotation specifying which calls should be unfolded, LOGEN generates a specialised specialiser for the program at hand. Running this specialiser with particular values for the static inputs results in the specialised program. While this requires two steps instead of one, the efficiency of the specialisation process is improved in situations where the same program is specialised multiple times. The paper also presents and evaluates an automatic binding-time analysis that is able to derive the annotations. While the derived annotations are still suboptimal compared to hand-crafted ones, they enable non-expert users to use the LOGEN system in a fully automated way Finally, LOGEN is extended so as to directly support a large part of Prolog's declarative and non-declarative features and so as to be able to perform so called mixline specialisations. In mixline specialisation some unfolding decisions depend on the outcome of tests performed at specialisation time instead of being hardwired into the specialiser

    The Ecce and Logen Partial Evaluators and their Web Interfaces

    No full text
    We present Ecce and Logen, two partial evaluators for Prolog using the online and offline approach respectively. We briefly present the foundations of these tools and discuss various applications. We also present new implementations of these tools, carried out in Ciao Prolog. In addition to a command-line interface new user-friendly web interfaces were developed. These enable non-expert users to specialise logic programs using a web browser, without the need for a local installation

    Joint Multi-Pitch Detection Using Harmonic Envelope Estimation for Polyphonic Music Transcription

    Get PDF
    In this paper, a method for automatic transcription of music signals based on joint multiple-F0 estimation is proposed. As a time-frequency representation, the constant-Q resonator time-frequency image is employed, while a novel noise suppression technique based on pink noise assumption is applied in a preprocessing step. In the multiple-F0 estimation stage, the optimal tuning and inharmonicity parameters are computed and a salience function is proposed in order to select pitch candidates. For each pitch candidate combination, an overlapping partial treatment procedure is used, which is based on a novel spectral envelope estimation procedure for the log-frequency domain, in order to compute the harmonic envelope of candidate pitches. In order to select the optimal pitch combination for each time frame, a score function is proposed which combines spectral and temporal characteristics of the candidate pitches and also aims to suppress harmonic errors. For postprocessing, hidden Markov models (HMMs) and conditional random fields (CRFs) trained on MIDI data are employed, in order to boost transcription accuracy. The system was trained on isolated piano sounds from the MAPS database and was tested on classic and jazz recordings from the RWC database, as well as on recordings from a Disklavier piano. A comparison with several state-of-the-art systems is provided using a variety of error metrics, where encouraging results are indicated

    A Critical Review of "Automatic Patch Generation Learned from Human-Written Patches": Essay on the Problem Statement and the Evaluation of Automatic Software Repair

    Get PDF
    At ICSE'2013, there was the first session ever dedicated to automatic program repair. In this session, Kim et al. presented PAR, a novel template-based approach for fixing Java bugs. We strongly disagree with key points of this paper. Our critical review has two goals. First, we aim at explaining why we disagree with Kim and colleagues and why the reasons behind this disagreement are important for research on automatic software repair in general. Second, we aim at contributing to the field with a clarification of the essential ideas behind automatic software repair. In particular we discuss the main evaluation criteria of automatic software repair: understandability, correctness and completeness. We show that depending on how one sets up the repair scenario, the evaluation goals may be contradictory. Eventually, we discuss the nature of fix acceptability and its relation to the notion of software correctness.Comment: ICSE 2014, India (2014

    Homeomorphic Embedding for Online Termination of Symbolic Methods

    No full text
    Well-quasi orders in general, and homeomorphic embedding in particular, have gained popularity to ensure the termination of techniques for program analysis, specialisation, transformation, and verification. In this paper we survey and discuss this use of homeomorphic embedding and clarify the advantages of such an approach over one using well-founded orders. We also discuss various extensions of the homeomorphic embedding relation. We conclude with a study of homeomorphic embedding in the context of metaprogramming, presenting some new (positive and negative) results and open problems
    corecore