
Science of Computer Programming 37 (2000) 163–205
www.elsevier.nl/locate/scico

Convergence of program transformers in the metric space
of trees(

Morten Heine B. SHrensen
Department of Computer Science, University of Copenhagen (DIKU), Universitetsparken 1, DK-2100

Copenhagen �, Denmark

Abstract

In recent years increasing consensus has emerged that program transformers, e.g. partial evalua-
tion and unfold=fold transformations, should terminate; a compiler should stop even if it performs
fancy optimizations! A number of techniques to ensure termination of program transformers have
been invented, but their correctness proofs are sometimes long and involved. We present a frame-
work for proving termination of program transformers, cast in the metric space of trees. We
�rst introduce the notion of an abstract program transformer; a number of well-known program
transformers can be viewed as instances of this notion. We then formalize what it means that an
abstract program transformer terminates and give a general su�cient condition for an abstract
program transformer to terminate. We also consider some speci�c techniques for satisfying the
condition. As applications we show that termination of some well-known program transformers
either follows directly from the speci�c techniques or is easy to establish using the general con-
dition. Our framework facilitates simple termination proofs for program transformers. Also, since
our framework is independent of the language being transformed, a single correctness proof can
be given in our framework for program transformers that use essentially the same technique in
the context of di�erent languages. Moreover, it is easy to extend termination proofs for program
transformers to accommodate changes to these transformers. Finally, the framework may prove
useful for designing new termination techniques for program transformers. c© 2000 Elsevier
Science B.V. All rights reserved.

Keywords: Program transformers; Supercompilation; Termination; Metric space of trees;
Generalization

1. Introduction

Numerous program transformation techniques have been studied in the areas of func-
tional and logic languages, e.g. partial evaluation (see [5,13]) and unfold=fold trans-
formations. Pettorossi and Proietti [33] show that many of these techniques can be

(This is an elaborated version of a conference paper [41] with the same title. The main additions comprise:
a number of examples; all the proofs in Sections 5 and 6; and the application to two new variants of positive
supercompilation in Section 7.
E-mail address: rambo@diku.dk (M.H.B. SHrensen).

0167-6423/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0167 -6423(99)00026 -X

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82098895?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

164 M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205

viewed as consisting of three conceptual phases which may be interleaved: symbolic
computation, search for regularities, and program extraction.
Given a program, the �rst phase constructs a possibly in�nite tree in which each

node is labeled with an expression; children are added to the tree by unfolding steps.
The second phase employs generalization steps to ensure that one constructs a �nite
tree. The third phase constructs from this �nite tree a new program.
The most di�cult problem for most program transformers is to formulate the second

phase in such a way that the transformer both performs interesting optimizations and
always terminates. Solutions to this problem now exist for most transformers.
The proofs that these transformers indeed terminate – including some proofs by the

author – are sometimes long, involved, and read by very few people. One reason for this
is that such a proof needs to formalize what it means that the transformer terminates,
and signi�cant parts of the proof involve abstract properties about the formalization.
In this paper we present a framework for proving termination of program transform-

ers. We �rst introduce the notion of an abstract program transformer, which is a map
from trees to trees expressing one step of transformation. A number of well-known
program transformers can be viewed as instances of this notion. Indeed, using the no-
tion of an abstract program transformer and associated general operations on trees, it
is easy to specify and compare various transformers, as we shall see.
We then formalize what it means that an abstract program transformer terminates and

give a su�cient condition for an abstract program transformer to terminate. A number
of well-known transformers satisfy the condition. In fact, termination proofs for some
of these transformers implicitly contain the correctness proof of the condition. Devel-
oping the condition once and for all factors out this common part; a termination proof
within our framework for a program transformer only needs to prove properties that are
speci�c to the transformer. This yields shorter, less error-prone, and more transparent
proofs, and means that proofs can easily be extended to accommodate changes in the
transformer. Also, our framework isolates exactly those parts of a program transformer
relevant for ensuring termination, and this makes our framework useful for designing
new termination techniques for existing program transformers.
The insight that various transformers are very similar has led to the exchange of many

ideas between researchers working on di�erent transformers, especially techniques to
ensure termination. Variations of one technique, used to ensure termination of positive
supercompilation [38], have been adopted in partial deduction [26], conjunctive partial
deduction [19], Turchin’s supercompiler [45], and partial evaluation of functional-logic
programs [1]. While the technique is fairly easily transported between di�erent settings,
a separate correctness proof has been given in each setting.
It would be better if one could give a single proof of correctness for this technique

in a setting that abstracts away irrelevant details of the transformers. Therefore, we
consider speci�c techniques, based on well-known transformers, for satisfying the con-
dition in our framework. The description of these techniques is speci�c enough to imply
termination of well-known transformers, and general enough to establish termination
of di�erent program transformers that use essentially the same technique in the context

M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205 165

of di�erent languages. As applications we demonstrate that this is true for positive
supercompilation and partial deduction (in the latter case only by a brief sketch).
The set of trees forms a metric space, and our framework can be elegantly presented

using such notions as convergence and continuity in this metric space. We also use a
few well-known results about the metric space of trees, e.g. completeness. However,
we do not mean to suggest that the merits of our approach stem from the supposed
depth of any of these results; rather, the metric space of trees o�ers concepts and
terminology useful for analyzing termination of abstract program transformers.
Section 2 introduces program transformers as maps from trees to trees. This is then

formalized in the notion of an abstract program transformer in Section 3. Section 4
presents variations of positive supercompilation as abstract program transformers.
Section 5 presents the metric space of trees, and Section 6 uses this to present our
su�cient condition for termination, as well as the speci�c techniques to satisfy the
condition. Section 7 shows that the di�erent variations of positive supercompilation
terminate. The section also gives a sketch of how Martens and Gallagher’s [29] generic
algorithm for partial deduction can be viewed as an abstract program transformer and
of a proof that it terminates.
We stress that it is not the intention of this paper to advocate any particular technique

that ensures termination of program transformers; rather, we are concerned with a
general method to prove that such techniques are correct.
This work is part of a larger e�ort to understand the relation between deforestation,

supercompilation, partial deduction, and other program transformers better
[20, 21, 23, 39, 40] and to develop a unifying theory for such transformers.

2. Trees in transformation

We now proceed to show how program transformers may be viewed as maps that
manipulate certain trees, following Pettorossi and Proietti [33].

Example 1. Consider a function program appending two lists.

a([]; vs) = vs
a(u : us; vs) = u : a(us; vs)

A simple and elegant way to append three lists is to use the expression a(a(xs; ys);
zs). However, this expression is ine�cient since it traverses xs twice. We now illustrate
a standard transformation obtaining a more e�cient method.
We begin with a tree whose single node is labeled with a(a(xs; ys); zs):

By an unfolding step which replaces the inner call to append according to the
di�erent patterns in the de�nition of a, two new expressions are added as labels on

166 M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205

children:

Unfolding steps are similar to evaluation steps in a small-step call-by-name opera-
tional semantics except that the former apply to expressions with variables.
In the rightmost child we can perform an unfolding step, which replaces the outer

call to append:

The label of the new child contains an outermost constructor. For transformation to
propagate to the subexpression of the constructor we again add children:

The expression in the rightmost child is a renaming of the expression in the root;
that is, the two expressions are identical up to choice of variable names. As we shall
see below, no further processing of such a node is required. Unfolding the child with
label a(ys; zs) two steps leads to:

M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205 167

The tree is now closed in the sense that each leaf expression either is a renaming
of an ancestor’s expression, or contains a variable or a 0-ary constructor. Informally,
a closed tree is a representation of all possible computations with the expression e in
the root, where branches in the tree correspond to di�erent run-time values for the free
variables of e. In the above tree, computation starts in the root with values for xs; ys
and zs, and then branches to one of the successor states depending on the shape of xs.
Assuming xs has form (u : us), the constructor “:” is then emitted and control is passed
to the two states corresponding to nodes labeled u and a(a(us; ys); zs), etc.
To construct a new program from a �nite, closed tree, we proceed as follows. 1

For each node that has several children according to di�erent patterns, we introduce
a new function de�nition, where the left-hand side is derived from the node’s label,
and the right-hand sides are derived from the children. More speci�cally the left-hand
side is obtained by renaming the label of the node to f(x1; : : : ; xn), where f is a fresh
function name and x1; : : : ; xn are the distinct variables that occur in the term. The right-
hand sides are obtained similarly from the children. The new term, which is to replace
the original term that was transformed, is obtained similarly from the root node.

In the above example we rename expressions of form a(a(xs; ys); zs) as aa(xs; ys; zs),
and we rename expressions of form a(ys; zs) as a′(ys; zs), and derive from the tree the
following new program: 2

aa([]; ys; zs) = a′(ys; zs)
aa(u : us; ys; zs) = u : aa(us; ys; zs)

a′([]; zs) = zs
a′(u : us; zs) = u : a′(us; zs)

The expression aa(xs; ys; zs) in this program is more e�cient than a(a(xs; ys); zs) in
the original program, since the new expression traverses xs only once.
The transformation in Example 1 proceeded in three phases – symbolic computation,

search for regularities, and program extraction – the �rst two of which were interleaved.
In the �rst phase we performed unfolding steps that added children to the tree. In the
second phase we made sure that no node with an expression which was a renaming of
an ancestor’s expression was unfolded, and we continued the overall process until the
tree was closed. In the third phase we recovered from the resulting �nite, closed tree
a new expression and program.

1 There are a number of exceptions to the following rules. In this paper we are concerned with techniques
for automatically constructing transformation trees such as those above, in particular with how one can make
the process terminate with a �nite, closed tree. Generating programs from such trees is not di�cult, but a
few technicalities must be observed. Since code generation is not the topic of this paper, we omit a detailed
account.
2 Incidentally, the new function a′ turns out to be a copy of the old function a.

168 M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205

In the above transformation we ended up with a �nite closed tree. Often, special
measures must be taken to ensure that this situation is eventually encountered, as in
the following example.

Example 2. Suppose we want to transform the expression a(a(xs; ys); xs), where a is
de�ned as in Example 1 – note the double occurrence of xs. As above we start out
with:

After the �rst few steps we have:

Unlike the situation in Example 1, the label of the rightmost node is not a renaming
of the expression at the root. In fact, repeated unfolding will never lead to that situation;
special measures must be taken.
One solution is to remove the information that sets the two expressions apart – the

second argument in the outer call to append. This is achieved by a generalization step
that replaces the whole tree by a single new node:

Another way of perceiving this step is that we have extracted the common structure
a(a(xs; ys); zs) of the two expressions (inserting fresh variables in the places where the
structure of the two expressions di�er).
When dealing with nodes of the new form let zs= e in e′ we then transform e and

e′ independently. Thus we arrive at:

Unfolding of the node labeled a(a(xs; ys); zs) leads to the same tree as in
Example 1.

M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205 169

When generating a new term and program from such a tree, we can eliminate
all let-expressions; in particular, in the above example, we generate the expression
aa(xs; ys; xs) and the same program as in Example 1. 3

Again transformation proceeds in three phases, but the second phase is now more
sophisticated, sometimes replacing a subtree by a new node in a generalization step.
Numerous program transformers can be cast more or less accurately in the three

above-mentioned phases, e.g. partial deduction [26, 29], conjunctive partial deduction
[19], compiling control [10], loop absorption [34], partial evaluation of functional logic
languages [1], unfold=fold transformation of functional programs [11], unfold=fold trans-
formation of logic programs [42], tupling [4, 32], supercompilation [43, 44], positive
supercompilation [21, 38], generalized partial computation [18], deforestation [46], and
online partial evaluation of functional programs [24, 36, 47].
Although o�ine transformers (i.e. transformers making use of analyses prior to

the transformation to make changes in the program ensuring termination) may �t
into the description with the three phases, the second phase is rather trivial, amounting
to the situation in Example 1.

3. Abstract program transformers

We now formalize the idea that a program transformer is a map from trees to trees,
expressing one step of transformation. We �rst introduce trees in a rigorous manner.
Most of the following de�nition is taken from Courcelle [12].

De�nition 1. A tree over a set E is a partial map 4 t :N∗
1 →E such that

1. dom(t) 6= ∅ (t is non-empty);
2. if ��∈ dom(t) then �∈ dom(t) (dom(t) is pre�x-closed);
3. if �∈ dom(t) then {i | �i∈ dom(t)} is �nite (t is �nitely branching);
4. if �j∈ dom(t) then �i∈ dom(t) for all 16i6j (t is ordered).

Let t be a tree over E. The elements of dom(t) are called nodes of t; the empty string
� is the root, and for any node � in t, the nodes �i of t (if any) are the children of
�, and we also say that � is the parent of these nodes. A branch in t is a �nite or
in�nite sequence �0; �1 : : : ∈ dom(t) where, for all i; �i+1 is a child of �i. A node with
no children is a leaf. We denote by leaf(t) the set of all leafs in t. For any node � of
t, t(�)∈E is the label of �. Also, t is �nite, if dom(t) is �nite. Finally, t is singleton
if dom(t)= {�}, i.e. if dom(t) is singleton.
T∞(E) is the set of all trees over E, and T (E) is the set of all �nite trees over E.

3 In some cases such let-expression elimination may be undesirable for reasons pertaining to e�ciency of
the generated program – but such issues are ignored in the present paper.
4 We let N1 =N\{0}. S∗ is the set of �nite strings over S. We use i; j; k ∈N1 and �; �;
∈N∗

1 . Finally,
dom(f) is the domain of a partial function f.

170 M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205

Example 3. Let EH (V) be the set of expressions over symbols H and variables V .
Let x; xs; : : : ∈V and a; cons; nil ∈H , denoting (x : xs) by cons(x; xs) and [] by nil.
Then let LH (V) be the smallest set such that e1; : : : ; en; e∈EH (V) implies that let
x1 = e1; : : : ; xn = en in e∈LH (V). The trees in Example 1 and 2 (ignoring labels on
edges) are a diagrammatical presentation of trees over EH (V) and LH (V), respectively.

De�nition 2. An abstract program transformer (for brevity also called an apt) on E
is a map M :T (E)→T (E).

An apt only computes a single step of transformation: it maps some tree to a new
tree by performing, e.g. an unfolding step. Hence, the sequences of trees in Examples 1
and 2 could be computed by iterated application of some apt.
How do we formally express that no more transformation steps will happen, i.e.

that the apt M has produced its �nal result? In this case, M returns its argument tree
unchanged, i.e. M (t)= t.

De�nition 3
1. An apt M on E terminates on t ∈T (E) if Mi(t)=Mi+1(t) for some i∈N. 5
2. An apt M on E terminates if M terminates on all singletons t ∈T (E).

Although apts are de�ned on the set T (E) of �nite trees, it turns out to be convenient
to consider the general set T∞(E) of �nite as well as in�nite trees.
The rest of this section introduces some de�nitions pertaining to trees that will be

used in the remainder.

De�nition 4. Let E be a set, and t; t′ ∈T∞(E).

1. The depth |�| of a node � in t is:

|�| = 0
|�i| = |�|+ 1

2. The depth |t| of t is de�ned by

|t| =
{
max{|�| | �∈ dom(t)} if t is �nite
∞ otherwise

3. For ‘∈N, the initial subtree of depth ‘ of t, written t[‘], is the tree t′ with

dom(t′) = {�∈ dom(t) | |�|6‘}
t′(�) = t(�) for all �∈ dom(t′)

5 For f :A→A; f0(a)= a; fi+1(a)=fi(f(a)):

M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205 171

4. For �∈ dom(t); t{� := t′} denotes the tree t′′ de�ned by

dom(t′′) = (dom(t)\{�� | ��∈ dom(t)})∪{�� | �∈ dom(t′)}

t′′(
) =
{
t′(�) if
= �� for some �
t(
) otherwise

5. We write t= t′; if dom(t)= dom(t′) and t(�)= t′(�) for all �∈ dom(t).
6. Let �∈ dom(t). The ancestors of � in t is the set

anc(t; �)= {�∈ dom(t) | ∃
 6= � : �= �
}

7. We denote by e→ e1; : : : ; en the tree t ∈T∞(E) with

dom(t) = {�}∪ {1; : : : ; n}
t(�) = e
t(i) = ei

As a special case, e→ denotes the t ∈T∞(E) with dom(t)= {�} and t(�)= e.

In the diagrammatical notation of Section 2, the depth of a node is the number of
edges in the branch from the root to the node. The depth of a tree is the maximal
depth of any node. The initial subtree of depth ‘ is the tree obtained by deleting all
nodes of depth greater than ‘ and edges into such nodes. The tree t{� := t′} is the tree
obtained by replacing the subtree with root � in t by the tree t′. The ancestors of a
node are the nodes on the branch from the root to the node, excluding the node itself.
Finally, the tree e→ e1; : : : ; en is the tree with root labeled e and n children labeled
e1; : : : ; en, respectively.

4. Example: positive supercompilation

In this section, we present three variants of positive supercompilation [21, 38–41] as
abstract program transformers.
The �rst subsection introduces the language for which we shall state the positive

supercompilers. The second subsection presents the unfolding operations used in posi-
tive supercompilation. The two next subsections introduce the generalization operations,
covering when to generalize and how to generalize, respectively. The last three subsec-
tions then introduce three variants of positive supercompilation which di�er in when
generalization is performed.

4.1. Language

We consider the following �rst-order functional language from [17]; the intended
operational semantics is normal-order graph reduction to weak head normal form.

172 M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205

De�nition 5. We assume a denumerable set of symbols for variables x∈X and �nite
sets of symbols for constructors c∈C, and functions f∈F and g∈G; symbols all
have �xed arity. The sets Q of programs, D of de�nitions, E of expressions, and P

of patterns are de�ned by

Q3 q ::=d1 : : : dm
D3d ::=f(x1; : : : ; xn), e (f -function)

| g(p1; x1; : : : ; xn), e1
... (g-function)

g(pm; x1; : : : ; xn), em
E3 e ::= x (variable)

| c(e1; : : : ; en) (constructor)
| f(e1; : : : ; en) (f -function call)
| g(e0; e1; : : : ; en) (g-function call)

P3p ::= c(x1; : : : ; xn)

where m¿0; n¿0. We require that no two patterns pi and pj in a g-function de�nition
contain the same constructor c, that no variable occur more than once in a left side of
a de�nition, and that all variables on the right side of a de�nition be present in its left
side. By vars(e) we denote the set of variables occurring in the expression e.

Example 4. The programs in Examples 1–2 are programs in this language using the
short notation [] and (x : xs) for the list constructors nil and cons(x; xs).

Remark. There is a close relationship between the set E of expressions introduced
above and the set EH (V) introduced in Example 3. In fact, E=EC∪F∪G(X). Therefore,
in what follows we can make use of well-known results and de�nitions for EH (V)
in reasoning about E. For instance, substitution on elements of E will be de�ned
indirectly, by de�ning substitution on elements of EH (V).

As we saw in Example 2, although the input and output programs of the transformer
are expressed in the above language, the trees considered during transformation might
have nodes containing let-expressions. Therefore, the positive supercompiler works on
trees over L, as de�ned below.

De�nition 6. The set L of let-expressions is de�ned as follows:

L3 ‘ ::= let x1 = e1; : : : ; xn = en in e

where n¿0. If n=0 then we identify the expression let x1 = e1; : : : ; xn = en in e
with e. Thus, E is a subset of L. If n¿0, we call ‘ a proper let-expression.

In the last three subsections we state our positive supercompilers as maps M :
T (L)→T (L). Given a program q∈Q and an expression e∈E, we can view e as

M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205 173

a member of L. By iterated application of M to the singleton tree labeled by e we
eventually get a �nite tree, which is closed in a certain sense, from which a new pro-
gram and term can be reconstructed. Since we are concerned only with termination of
the process, reconstruction of the new program and term will not be considered.

4.2. Unfolding

We now set out to formulate the unfolding operations used in positive super-
compilation.
When we perform unfolding steps, we instantiate variables to patterns, e.g. xs to

(u : us). To avoid confusion of variables, we must choose the variables in the pattern
with some care.

Example 5. Consider again the append program:

a([]; ys) = ys
a(x : xs; ys) = x : a(xs; ys)

Suppose we wish to transform the term a(xs; [x]) that appends an element to the end
of a list. We might construct the tree:

From this tree we can construct the new term l(xs; x) and the program

l([]; x) = [x]
l(x : xs; x) = x : l(xs; x)

In fact, this is not a program: the left-hand side with two occurrences of x is illegal.
How did the problem arise? We started out with the root expression a(xs; [x]) and

instantiated xs to (x : xs) arriving at a node labeled x : a(xs; [x]) in which the �rst x
refers to the x in the pattern, and the second x refers to the x in the original term. We
have confused di�erent variables by giving them the same name x.
How can the problem be avoided? When instantiating a variable to a pattern we

are free to use whatever variable names in the pattern we like, as long as we use the
same names in the corresponding right-hand side of the function de�nition. Instead of
(x : xs) we should have taken a pattern with fresh names, e.g. (u : us).
The following de�nitions introduce terminology to express freshness.

De�nition 7. A substitution on EH (V) is a total map from V to EH (V). We denote
by {x1 := e1; : : : ; xn := en} the substitution that maps xi to ei (which we require to

174 M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205

be di�erent from xi) and all other variables to themselves. Substitutions are lifted to
expressions as usual, and application of substitutions is written post�x.

De�nition 8. Let � be a substitution on EH (V).

1. The support of � is:

support(�)= {x∈V | x� 6= x};
2. The yield of � is:

yield(�)=
⋃ {vars(x�) | x∈ support(�)};

3. � is free for e∈EH (V) if

yield(�)∩ vars(e)= ∅:

The crucial property of a substitution � which is free for an expression e is that
the variables in the range of � (at least those variables that are not simply mapped to
themselves) do not occur already in e. In the above example we should have chosen the
substitution that instantiates a variable to a pattern free for the expression containing
the variable to be instantiated.
Unfolding steps add children to leaf nodes. The essence in de�ning the unfolding

step is to de�ne how the expressions in the new children are computed from the
leaf’s expression.
This computation is formalized by the following relation ⇒ which is similar to

the usual small-step semantics for normal-order reduction to weak head normal form.
The relation extends the usual semantics by propagating to the arguments of construc-
tors and by working on expressions with variables; the latter is done by propagating
uni�cations representing the assumed outcome of tests on constructors – notice the
substitution {y :=p} in the third rule. Also, the reduction for let-expressions expresses
the semantics of generalizations: that we are trying to keep things apart.

De�nition 9. For a program q, the relations e→� e′ and ‘⇒ e where e; e′ ∈E; ‘∈L,
and � is a substitution on E, are de�ned as in Fig. 1.

Example 6. Rules (1)–(3) are the base cases. For instance,

a(xs; ys)→{xs:=(u :us)} u : a(us; ys) by Rule (3)

Rule (4) allows reduction in contexts, i.e. inside the �rst argument of a g-function. For
instance,

a(a(xs; ys); xs)→{xs:=(u :us)} a(u : a(us; ys); xs) by Rule (4)

Rules (5)–(7) are the main rules. For instance,

a(a(xs; ys); xs) ⇒ a(u : a(us; ys); u : us) by Rule (5)
u : a(a(us; ys); u : us) ⇒ a(a(us; ys); u : us) by Rule (6)

M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205 175

Fig. 1. Generalized normal-order reduction.

The unfolding operation in positive supercompilation is called driving.

De�nition 10. Let t ∈T (L) and �∈ leaf (t). Then

drive(t; �)= t{� := t(�)→ e1; : : : ; en}

where {e1; : : : ; en}= {e | t(�)⇒ e}.

The driving operation is illustrated in Fig. 2 together with some generalization
operations introduced in a later subsection.

Example 7. All the unfolding steps in Examples 1–2 are, in fact, driving steps.

4.3. Generalization: when

Next we set out to formulate the generalization operations used in positive supercom-
pilation. In this subsection we present the technique which decides when to generalize.
The next subsection presents the actual generalization operations.
The following relation E, adoped from [15], is used to decide when to generalize.

De�nition 11. The homeomorphic embedding E is the smallest relation on EH (V)
such that, for all h∈H; x; y; ∈V , and ei; e′i ∈EH (V):

x Ey
∃i∈{1; : : : ; m}: e E e′i
e E h(e′1; : : : ; e′m)

∀i∈{1; : : : ; n}: ei E e′i
h(e1; : : : ; en)E h(e′1; : : : ; e′n)

where m¿0 and n¿0.

176 M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205

Fig. 2. Operations used in positive supercompilation.

Example 8. The following expressions from EH (V) give examples and non-examples
of embedding, where b; c; f∈H .

b E f(b) f(c(b)) 5 c(b)
c(b) E c(f(b)) f(c(b)) 5 c(f(b))

c(b; b) E c(f(b); f(b)) f(c(b)) 5 f(f(f(b))):

One way of using the homeomorphic embedding relation to decide whether to drive
a given leaf or generalize is as follows: if the leaf has an ancestor whose expression is
embedded in the leaf’s expression, then we should generalize; if not, we should drive.

M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205 177

Example 9. Consider the following functional program reversing a list by means of
an accumulating parameter:

rev(xs) = r(xs; [])
r([]; vs) = vs
r(u : us; vs) = r(us; u : vs)

Suppose we wish to transform rev(xs). After two driving steps we have:

Here the rightmost leaf expression has the parent’s expression embedded, so we should
not drive the leaf. In fact, this decision is wise: repeated driving would never lead to
an expression that is a renaming of an ancestor’s expression.
The rationale behind using the homeomorphic embedding relation in this way is

that in any in�nite sequence e0; e1; : : : of expressions, there de�nitely are i¡j with
ei E ej (see Theorem 51). Thus, if driving is stopped at any node with an expression in
which an ancestor’s expression is embedded, driving cannot construct an in�nite branch.
Conversely, if ei E ej then all the subexpressions of ei are present in ej embedded in
extra subexpressions. This suggests that ej might arise from ei by some in�nitely
continuing system, so driving is stopped for a good reason.
The homeomorphic embedding relation is de�ned on elements of E, not on elements

L. Therefore, in order to compare nodes in arbitrary trees over L we have to either
extend the relation to L or make sure that it is not applied to elements of L\E.
We choose the latter by always driving a node with a proper let-expression without

comparing to ancestors. Also, when a node is compared to ancestors we do not compare
it to those with proper let-expressions. In fact, not only proper let-expressions, but all
trivial expressions, will be handled this way.

De�nition 12
1. An element of L is trivial if it has one of the following forms:

(a) let x1 = e1; : : : ; xm = em in e where m¿0;
(b) c(e1; : : : ; en), where n¿0;

2. Given t ∈T (L), a �∈ dom(t) is trivial if t(�) is trivial. Also,

triv(t)= {�∈ dom(t) | � is trivial}:

New leaf expressions, resulting from driving a node with a trivial expression,
are strictly smaller than the former expression in a certain order (see Lemma 56).

178 M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205

Informally, this explains why there is no harm done in driving leaves with trivial
expressions without comparing to ancestors.
The idea that a leaf node be compared to only some of its ancestors will be ac-

commodated by comparing a leaf expression to the expressions of a certain subset of
the ancestors which depends on the leaf node. This subset will be called the relevant
ancestors. Thus, the relevant ancestors of a trivial leaf is the empty set, and the relevant
ancestors of a non-trivial leaf is all its non-trivial ancestors.

De�nition 13. Let t ∈T (L) and �∈ dom(t). The set relanc(t; �) of relevant ancestors
of � in t is de�ned by

relanc(t; �)=
{ {} if �∈ triv(t)
anc(t; �)\triv(t) if � =∈ triv(t)

In conclusion, given a tree t ∈T (L) we may drive a �∈ leaf (t) provided no relevant
ancestor has an expression which is homeomorphically embedded in the leaf’s expres-
sion. In the next subsection we present the generalization operations to be performed
when some relevant ancestor does have an expression which is homeomorphically
embedded in the leaf’s expression.

4.4. Generalization: how

In generalization steps one compares two expressions and extracts common structure.
For instance, in Example 2 we compared the root expression a(a(xs; ys); xs) with the
leaf expression a(a(us; ys); u : us) and extracted the common structure a(a(us; ys); zs).
The most speci�c generalization (see [15]) extracts the most structure in a certain

sense.

De�nition 14. Let e1; e2 ∈EH (V), for some H; V .

1. The expression e2 is an instance of e1; e16. e2, if e1�= e2 for a substitution �.
2. The expression e1 is a renaming of e2; e1

:= e2, if e16. e2 and e16. e1.
3. A generalization of e1; e2 is a expression eg such that eg6. e1 and eg6. e2.
4. A most speci�c generalization (msg) of e1 and e2 is a generalization eg such that,
for every generalization e′g of e1 and e2, it holds that e

′
g6. eg.

Example 10. Let x; y; u; v∈V and f∈H , and consider elements of EH (V). Examples
of renamings:

1. f(x; y) is a renaming of f(x; y);
2. f(u; v) is a renaming of f(x; y);
3. f(y; x) is a renaming of f(x; y).

M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205 179

Non-examples of renamings:

1. f(f(u; v); x) is not a renaming of f(x; y);
2. f(x; x) is not a renaming of f(x; y);
3. f(x; y) is not a renaming of f(x; x).

Remark. Note that we now use the term generalization in two distinct senses: to denote
certain operations on trees performed by supercompilation (as in Example 2), and to
denote the above operation on expressions. The two senses are related: generalization
in the former sense will make use of generalization in the latter sense.

Example 11. Let x; y∈V , and b; c; f∈H . The following table gives examples of most
speci�c generalizations eg of e1; e2 ∈EH (V) and accompanying substitutions �1; �2 with
eg�i= ei:

e1 e2 eg �1 �2

b f(b) x {x := b} {x :=f(b)}
c(b) c(f(b)) c(x) {x := b} {x :=f(b)}
c(x) c(f(x)) c(y) {y := x} {y :=f(x)}
c(b; b) c(f(b); f(b)) c(x; x) {x := b} {x :=f(b)}

Remark. Any two e1; e2 ∈EH (V) have at most one msg up to renaming; that is, if eg
and e′g are both msg’s of e1 and e2, then eg

:= e′g.

Proposition 15. For any e1; e2 ∈EH (V) there is an eg ∈EH (V) and substitutions
�1; �2 such that:

1. eg is an msg of e1 and e2;
2. eg�1 = e1 and eg�2 = e2;
3. support(�1)= support(�2)= vars(eg).

Proof. See, e.g. [15].

De�nition 16. Let e1; e2 ∈EH (V).

1. By e1 u e2 we denote a triple (eg; �1; �2) satisfying the conditions of Proposition 15.
2. We say that e1 and e2 are incommensurable, e1↔ e2, if e1 u e2 = (x; �1; �2); x∈V .

Positive supercompilation uses two types of generalization step: abstract and split;
the former type, in turn, comes in two variants, upwards abstract and downwards
abstract. All three types of steps may be invoked when the expression of a leaf node
has a relevant ancestor’s expression embedded.
The generalization step in Example 2 is an example of an upwards abstract step.

In this type of step we replace the tree whose root is the ancestor by a single new

180 M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205

node labeled with a new expressison which captures the common structure of the leaf
and ancestor expressions. This common structure is computed by the most speci�c
generalization operation.
In case the leaf expression is an instance of the ancestor expression, the msg of the

two expressions is the same as the ancestor expression. Hence, it does not make sense
to attempt to extract some common structure at the ancestor and continue with that: this
structure is the ancestor itself. However, we can replace the leaf node by a new node
with an expression capturing the common structure. This is what a downwards abstract
step does. For instance, if the leaf expression is f(u : us) and the ancestor expression
is f(xs), we can replace the leaf node by a node with expression let xs= u : us in
f(xs). By driving, this node will receive two children labeled u : us and f(xs); since
the latter node is now a renaming of the ancestor’s expression, no further processing
of it is required.
In some cases, the expression of a leaf node may have an ancestor’s expression

embedded, and yet the two expressions have no common structure in the sense of
msg’s, i.e. the expressions are incommensurable (their msg is a variable). In this case,
performing an abstract step – whether upwards or downwards – would not make any
progress towards termination of the supercompilation process. For instance, we might
have a leaf with expression f(g(x)) and an ancestor with expression g(x), and their
msg is a variable. Therefore, applying an abstract step (upwards or downwards) would
replace a node labeled e with a new node labeled let z= e in z which, by driving,
would spawn a child labeled e. Thus, no progress has been made.
In such cases a split step is performed. The idea behind a split step is that if the

ancestor expression is embedded in the leaf expression, then there is a subterm of the
leaf expression which has structure in common with the ancestor. Hence, the split step
digs out this structure.
The following example illustrates upwards and downwards abstract steps, and the

next example illustrates split steps.

Example 12. Consider again the following functional programs reversing a list by
means of an accumulating parameter:

rev(xs) = r(xs; [])
r([]; vs) = vs
r(u : us; vs) = r(us; u : vs)

Again we transform rev(xs), and after two driving steps we have

M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205 181

Here the rightmost leaf expression has its parent’s expression embedded. We perform
an upwards generalization step:

A few more driving steps yield:

Here the rightmost leaf expression has its parent’s expression embedded. However,
the leaf expression is an instance of its parent’s expression. We therefore perform a
downwards generalization step:

Driving �nally leads to the following tree:

182 M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205

From this tree one can construct a new term and program (which turn out to be
identical to the original term and program).

Example 13. Consider another functional program reversing a list:

rev([]) = []
rev(u : us) = l(rev(us); u)
l([]; v) = [v]
l(u : us; v) = u : l(us; v)

Suppose we wish to transform the expression rev(xs). After the �rst driving step we
have

The root expression is embedded in the rightmost leaf expression. We cannot perform
an upwards abstract step, since the msg of the two expressions is a variable. For the
same reason we cannot perform a downwards abstract step.
However, the root expression clearly has structure in common with a subexpression

of the leaf expression, namely the subexpression rev(us). Hence we perform a split
step:

Driving then gives

from which a new term and program can be recovered (that turn out to be identical
to the original term and program).

M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205 183

The following, then, are the generalization operations used in positive supercompi-
lation; the operations are illustrated in Fig. 2.

De�nition 17. Let t ∈T (L).

1. For �∈ leaf (t) with t(�)= h(e1; : : : ; en); h∈C ∪F ∪G; de�ne
split(t; �)= t{� := let x1 = e1; : : : ; xn= en in h(x1; : : : ; xn)→}

2. For �; �∈ dom(t) with t(�); t(�)∈E; t(�) u t(�)= (e; {x1 := e1; : : : ; xn := en}; �2)
de�ne

abstract(t; �; �)= t{� := let x1 = e1; : : : ; xn= en in e→}

Remark. Note that the abstract operation is de�ned only in case t(�); t(�)∈E (not in
general for t(�); t(�)∈L). This is fortunate since u is de�ned only on E. But will we
not need to invoke the operations in cases where t(�); t(�)∈L\E? No: all l∈L\E
are trivial and will hence be driven without comparison with ancestors.

4.5. Positive supercompilation

We are �nally ready to de�ne our �rst variant of positive supercompilation.

De�nition 18. Let t ∈T∞(L): A �∈ leaf (t) is processed if � is non-trivial and one
of the following conditions are satis�ed:

1. t(�)= c() for some c∈C;
2. t(�)= x for some x∈X ;
3. t(�) is a renaming of t(�) for some �∈ relanc(t; �).

Also, t is closed if all leafs in t are processed.
Positive supercompilation P : T (L)→ T (L) can then be de�ned as follows. 6

De�nition 19. Given t ∈T (L), if t is closed P(t)= t. Otherwise, let �∈ leaf (t) be an
unprocessed node and proceed as follows.

if ∀�∈ relanc(t; �) : t(�) 5 t(�) then P(t)= drive(t; �)
else begin

let �∈ relanc(t; �) and t(�)E t(�).
if t(�)6. t(�) then P(t)= abstract(t; �; �)
else if t(�)↔ t(�) then P(t)= split(t; �)
else P(t)= abstract(t; �; �).

end

6 A number of choices are left open in the algorithm, e.g. how one chooses among the unprocessed leaf
nodes. Such details are beyond the scope of the present paper.

184 M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205

Example 14. The steps in Examples 12 and 13 are exactly the steps that P computes.

Remark. The algorithm calls abstract and split only in cases where these operations are
well-de�ned. Indeed, when abstract (t; �; �) is called, then �∈ relanc(t; �). In particular,
�; � are non-trivial, so t(�); t(�)∈E. Similarly, when abstract (t; �; �) is called. Finally,
when split (t; �) is called, then � is non-trivial and unprocessed, so t(�)∈E\X , i.e.,
t(�)= h(e1; : : : ; en) for some h∈C ∪F ∪G:

In Section 7 we prove that P terminates.
In the next two subsections we introduce two variations of the above positive su-

percompiler. In the �rst, the relation E is replaced by another relation; in the other,
the de�nition of relanc is changed.

4.6. Positive supercompilation with very simple characteristic trees

In some cases the above algorithm generalizes where one would have preferred it
to drive. For instance, on the tree:

we cannot drive at the rightmost node since the root expression is embedded in its
expression. In fact, the algorithm performs an upwards abstract step which separates
the inner and outer call to append, in e�ect preventing elimination of the intermediate
data structure.
The reason that we want to drive the leaf node, despite the fact that its expression

has an ancestor’s expression embedded, is that the ancestor’s expression gave rise to
several children corresponding to di�erent patterns, whereas the leaf expression does
not give rise to several children according to di�erent patterns. In other words, new
information is available in the leaf expression, and it is desirable that this be taken
into account by a driving step.
This idea is formalized by the following map B, which gives a very simple version

of the characteristic trees, studied by Leuschel and Martens [26] and others.

De�nition 20. De�ne B : E → B by

B(g(e0; e1; : : : ; em)) = B(e0)
B(f(e1; : : : ; em)) = 0
B(c(e1; : : : ; em)) = 0
B(x) = 1

We write e E∗ e′ i� e E e′ and B(e)=B(e′).

M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205 185

Example 15.
1. B(r(xs; []))=B(r(us; [u])); so r(xs; [])E∗ r(us; [u]);
2. B(a(a(xs; ys); zs))¿B(a(u : a(us; ys); zs)); so a(a(xs; ys); zs) 5∗ a(u : a(us; ys); zs).

The above algorithm can then be repeated with E∗ in place of E . This algorithm
will be called C.

Example 16. The algorithm computes exactly the sequences of trees in Examples 1–2.

In Section 7 we prove that C terminates.

4.7. Positive supercompilation with local unfolding

An alternative to our very simple characterisitic trees is to consider a form of local
unfolding as adopted in partial deduction – see e.g. [26]. Recall again the tree from
Example 1:

We wish to perform a driving step at the rightmost leaf without testing whether any
ancestor’s expression is embedded in the leaf expression (because, in fact, there is an
ancestor whose expression is embedded in the leaf’s expression: the root).
In the third variant of positive supercompilation, we will divide the non-trivial nodes

into two categories: global ones and local ones. The global nodes are those that give
rise to instantiation of variables in driving steps. For instance, in the above tree, the
nodes labeled a(a(xs; ys); zs) and a(ys; zs) are global, whereas the one labeled a(u :
a(us; ys); zs) is not. The local nodes are the non-global ones.
When considering a global leaf node we will compare it only to its global ancestors.

When considering a local node, we will compare it only to its immediate local ancestors
up to (but not including) the nearest global ancestor. Thus, in the above tree, we would
not compare the rightmost leaf to the root.

De�nition 21. Let t ∈T (L) and �∈ dom(t) be non-trival.

1. Node � is global if t(�) →� e for some � 6= {}. The set of global ancestors of �
in t, globanc(t; �), is the set of global nodes in anc(t; �).

2. Node � is local if � is not global. The set of immediate local ancestors of � in t,
locanc(t; �), is the set of local nodes among �1; : : : ; �n (n¿0), where �1; : : : ; �n; � is
the longest branch in t ending in � such that t(�1); : : : ; t(�n) are all local or trivial. 7

7 Note that we compare a local leaf with local ancestors across trivial ancestors. This turns out to be
necessary to ensure termination.

186 M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205

De�nition 22. Let t ∈T (L) and �∈ dom(t). The set of relevant ancestors of � in t,
relanc(t; �), is de�ned by

relanc(t; �)=




{} if t(�) is trivial;
locanc(t; �) if t(�) is local;
globanc(t; �) if t(�) is global:

The algorithm for P can then be repeated with the new de�nition of relevant ances-
tors. This algorithm will be called L.

Example 17. The algorithm computes exactly the trees in Examples 1 and 2.

Section 7 addresses termination of L.

5. The metric space of trees

As mentioned above, we will prove termination of our positive supercompilers in
Section 7. However, �rst we shall develop in the next section a framework within
which these proofs can be developed. The present section introduces a mathematical
structure that is useful for this framework.
As suggested by the examples in Section 2, termination of an abstract program trans-

former amounts to a certain form of convergence of sequences of trees. We therefore
�rst review some fundamental de�nitions and properties from the theory of metric
spaces, which is a general framework for the study of convergence – see, e.g. [35].
Metric spaces have many applications in computer science – see e.g. [28, 37].
Having introduced metric spaces, we then recall how the set of trees over some

set can be viewed as a metric space. This enables us to reason about convergence of
our sequences of trees. Early papers studying the metric space of trees include [2, 3,
6–9, 12, 30]. More recent references appear in [28, 37]. Lloyd [27] uses the metric space of
trees to present complete Herbrand interpretations for non-terminating logic programs.

5.1. Metric spaces

We �rst recall the concept of a metric space.

De�nition 23. Let X be a set and d :X × X →R+ a map 8 with, for all x; y; z ∈X :
1. d(x; y)=d(y; x);
2. d(x; y)= 0 i� x=y;
3. d(x; y) + d(y; z)¿d(x; z).

Then d is a metric on X , and (X; d) is a metric space.

8 R+ = {r ∈R | r¿0}.

M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205 187

Example 18.

1. The function d(x; y)= |x − y| is a metric on R.
2. For a set X , the map d :X × X →R+,

dX (x; y)=

{
0 if x=y

1 if x 6= y

is a metric on X , called the discrete metric on X .

The following de�nition recalls the notion of a convergent sequence in a metric
space. Informally, a sequence converges to some limit, if the distance between the
limit and the elements of the sequence approach 0. A trivial special case, which will
be useful in our framework, is when the elements of the sequence are identical to
the limit from some step. In this case we say that the sequence stabilizes to the
limit.
A slightly weaker property of sequences than being convergent is being a Cauchy

sequence. Very informally, a sequence is Cauchy, if the distance between its elements
approach 0. A metric space in which all Cauchy sequences are convergent is called
complete. It is well-known that the metric space of trees is complete – see below –
and this result turns out to be useful for our framework.

De�nition 24. Let (X; d) be a metric space.

1. A sequence x0; x1; : : : ∈X stabilizes to x∈X if there exists an N such that, for all
n¿N; d(xn; x)= 0.

2. A sequence x0; x1; : : : ∈X is convergent with limit x∈X if, for all �¿0, there exists
an N such that, for all n¿N; d(xn; x)6�.

3. A sequence x0; x1; : : : ∈X is a Cauchy sequence if, for all �¿0, there exists an N
such that, for all m; n¿N , d(xn; xm)6�.

Remark. Let (X; d) be a metric space.

1. A stabilizing sequence is convergent, and a convergent sequence is a Cauchy se-
quence. None of the converse implications hold in general.

2. Any sequence has at most one limit.

De�nition 25. Let (X; d) be a metric space. If every Cauchy sequence in (X; d) is
convergent then (X; d) is complete.

In our framework we shall consider predicates on the elements (trees) of certain
sequences, and these predicates must satisfy certain well-behavedness conditions. The
following well-known concepts will be useful for expressing these conditions.

188 M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205

De�nition 26. Let (X; d); (Y; d′) be metric spaces. A map f :X →Y is continuous at 9

x∈X if, for every sequence x0; x1; : : : ∈X that converges to x; f(x0); f(x1); : : : ∈Y
converges to f(x). Also, f :X →Y is continuous if f is continuous at every x∈X .

Example 19. Let (X; d) be a metric space. Let dB be the discrete metric on B= {0; 1}.
It is natural to view a predicate on X as a function p :X →B, and say that p(x) is
true and false if p(x)= 1 and p(x)= 0, respectively.
Then p is continuous i� for every sequence x0; x1; : : : that converges to x, the

sequence p(x0); p(x1); : : : converges to p(x).

Remark. Let (X; dX); (Y; dY), and (Z; dZ) be metric spaces. If f :X →Y and g :Y →Z
are both continuous, then so is g ◦ f :X →Z .

5.2. The metric space of trees

We now show that the set T∞(E), for some set E, can be viewed as a metric space.
What is the distance between t; t′ ∈T∞(E)? It is natural to require that trees which

have large coinciding initial subtrees are close.

De�nition 27. De�ne d :T∞(E)× T∞(E)→R+ by

d(t; t′)=

{
0 if t= t′;
2−min{l | t[l]6=t′[l]} otherwise:

It is a routine exercise to verify that (T∞(E); d) is indeed a metric space, which we
call the metric space of trees (over E).
The following shows how the notions of stabilizing, convergent, and Cauchy

sequence appear in the special metric space (T∞(E); d).

Remark
1. A sequence t0; t1; : : : ∈T∞(E) stabilizes to t i� there exists an N such that, for all
n¿N , tn= t.

2. A sequence t0; t1; : : : ∈T∞(E) converges to t i� for all l, there exists an N such
that, for all n¿N , tn[l] = t[l].

3. A sequence t0; t1; : : : ∈T∞(E) is a Cauchy sequence i� for all l, there exists an N
such that, for all n¿N , tn[l] = tn+1[l].

The next result, which was mentioned above, was �rst proved by Bloom et al. [7],
and independently noted by Mycielski and Taylor [30] and Arnold and Nivat [2, 3].

Proposition 28. The metric space (T∞(E); d) is complete.

9 This is not the usual de�nition of continuity, but it is well-known that this de�nition is equivalent to
the usual one.

M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205 189

Proof. Let t0; t1; : : : ∈T∞(E) be a Cauchy sequence. Let �(l) be the smallest number
N such that for all n¿N , all the initial subtrees tn[l]; tn+1[l]; : : : are identical; by the
preceding remark, � is well-de�ned. In symbols:

�(l)= min{N ∈N | ∀n¿N : tn[l] = tn+1[l]}

Then de�ne a limit t as follows. For every l, the initial subtrees t0[l]; t1[l]; : : : are
identical from some step. The root of t is the root of the identical initial subtrees of
depth 0. The nodes of depth 1 in t, if any, are the nodes at depth 1 of the identical
initial subtrees of depth 1, etc. In symbols:

dom(t) = {�∈N∗
1 | �∈ dom(t�(|�|))}

t(�) = t�(|�|)(�) for all �∈ dom(t)
Then t0; t1; : : : converges to t.

The following connection between stability, convergence, and predicates does not
hold in arbitrary metric spaces. The result will be useful in the next section.

Lemma 29. A predicate p on T∞(E) is continuous i� for every convergent sequence
t0; t1; : : : ∈T∞(E) with in�nite limit t, the sequence p(t0); p(t1); : : : stabilizes to p(t).

Proof. The left to right direction is obvious. For the other direction, assume the se-
quence t0; t1; : : : ∈T∞(E) converges to t. We must prove that p(t0); p(t1); : : : converges
to p(t). If t is in�nite, this follows from the assumptions. If t is �nite, then t0; t1; : : :
in fact stabilizes to t, so p(t0); p(t1); : : : stabilizes to p(t).

6. Termination of transformers

We now develop or framework for proving termination of abstract program trans-
formers. In the �rst subsection, we give a condition ensuring termination of an abstract
program transformer. In the next two subsections we consider some speci�c techniques
for satisfying the condition.

6.1. A condition ensuring termination of apts

The idea in ensuring termination of an apt is that it maintains some invariant. For
instance, a transformer might never introduce a node whose label is larger, in some
order, than the label on the parent node. In cases where an unfolding step would render
the invariant false, some kind of generalization is performed.

De�nition 30. Let M :T (E)→ T (E) be an apt on E and p :T∞(E)→ B be a predi-
cate. M maintains p if, for every singleton t ∈T (E) and i∈N; p(Mi(t))= 1.

190 M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205

Our condition requires that the predicate maintained by the transformer be false on
in�nite trees.

De�nition 31. A predicate p :T∞(E)→B is �nitary if p(t)= 0 for all in�nite
t ∈T∞(E).

De�nition 32. An apt M on E is Cauchy if, for every singleton t ∈T∞(E), the
sequence t; M (t); M 2(t); : : : is a Cauchy sequence.

The following theorem gives a su�cient condition for a program transformer to
terminate.

Theorem 33. Let apt M :T (E)→ T (E) maintain predicate p :T∞(E)→ B. If

1. M is Cauchy; and
2. p is �nitary and continuous,

then M terminates.

Proof. Let apt M :T (E) → T (E) and predicate p :T∞(E) → B satisfy the conditions
of the theorem. Given some singleton t ∈T (E), consider the sequence

t0; t1; : : :

where ti=Mi(t), By assumption this sequence is Cauchy. By completeness the
sequence then converges to some t ∈T∞(E).
Suppose t0; t1; : : : is not bounded, i.e. for all l; I; there exists i¿I such that |ti|¿l.

Then t must be in�nite. Hence p(t) is false. Then, by continuity and Lemma 29, p(tn)
is false for all n¿N for some N . This contradicts the assumption that M maintains p.
Thus, t0; t1; : : : is bounded, i.e. there exists certain l; I; such that for all i¿I; |ti|6l.
Since t0; t1; : : : is Cauchy, there exists J such that, for all j¿J; tj[l] = tj+1[l]. With

N = max{I; J} it follows that, for all n¿N ,
tn = tn[l] since |tn|6l

= tn+1[l] since tn[l] = tn+1[l]
= tn+1 since |tn+1|6l

Thus, t0; t1; : : : stabilizes, so M terminates.

The proof shows that the following slightly stronger result holds.

De�nition 34. Let M :T (E)→ T (E) be an apt on E and p :T∞(E)→ B be a predi-
cate. M weakly maintains p if, for every singleton t ∈T (E) it holds that p(Mi(t))= 1
for in�nitely many i∈N.

Corollary 35. Let apt M :T (E)→ T (E) weakly maintain p :T∞(E)→ B. If

M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205 191

1. M is Cauchy; and
2. p is �nitary and continuous;

then M terminates.

In other words, the transformer may make some intermediate steps in which its
predicate is temporarily false, as long as it always eventually returns to a state where
the predicate is true again.
Informally, the condition that M be Cauchy guarantees that only �nitely many gen-

eralization steps will happen at a given node, and the condition that p be �nitary and
continuous guarantees that only �nitely many unfolding steps will be used to expand
the transformation tree. The �rst condition can be satis�ed by adopting appropriate
unfolding and generalization operations, and the second condition can be satis�ed by
adopting an appropriate criterion for deciding when to generalize.
In the rest of this section we consider speci�c techniques for ensuring that an apt is

Cauchy and that a predicate is �nitary and continuous.

6.2. Cauchy transformers

We begin by studying circumstances under which a transformer is Cauchy. The
following two de�nitions �x terminology for some well-known concepts.

De�nition 36. Let S be a set with a relation 6. Then (S;6) is a quasi-order if 6
is re
exive and transitive. We write s¡s′ if s6s′ and s′ 66s.

De�nition 37. Let (S;6) be a quasi-order.

1. (S;6) is well-founded if there is no in�nite sequence s0; s1; : : : ∈ S with s0¿s1¿
: : : :

2. (S;6) is a well-quasi-order if, for every in�nite sequence s0; s1; : : : ∈ S, there are
i¡j with si6sj.

An apt is Cauchy if it always either adds some new children to a leaf node (unfolds),
or replaces a subtree by a new tree whose root label is strictly smaller than the label
of the root of the former subtree (generalizes). This is how most online transformers
work.

Proposition 38. Let (E;6) be a well-founded quasi-order and M :T (E)→T (E) an
apt such that, for all t; M (t)= t{
 := t′} for some
; t′ where
1.
∈ leaf (t) and t(
)= t′(�) (unfold); or
2. t(
)¿t′(�) (generalize).

Then M is Cauchy.

192 M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205

Proof. Given a singleton tree t, let ti=Mi(t). We prove by induction on l that, for
all l, there is N such that, for all m; n¿N; tn[l] = tm[l].
For l=0, suppose {ti(�) | i∈N} is in�nite. Then there are in�nitely many gen-

eralization steps, i.e. for in�nitely many i; ti(�)¿ti+1(�). This clearly contradicts the
assumption that 6 is a well-founded quasi-order. Hence there is an N0 such that for
all n; m¿N0; tn(�)= tm(�), i.e. tn[0]= tm[0].
For l¿0 there is, by the induction hypothesis, an Nl−1 such that for all m; n¿Nl−1;

tn[l− 1]= tm[l− 1]. The only way children can be added to level l after step Nl−1 is
by an unfolding step. Thus, there is a number M such that the number of children at
level l is the same in tn for all n¿M . Let this number of children be K . For each node
at level l now proceed as in the case l=0. This gives K numbers N1; : : : ; NK¿M .
Let N = max{N1; : : : ; NK}. Then, for all m; n¿N; tn[l] = tm[l].

6.3. Continuous predicates

Now we consider ways of ensuring that a predicate is (�nitary and) continuous.
A family S of sets is of �nite character if each set is a member if and only if all

its �nite subsets are members. Adapting the notion to families of trees, we might say
that a family T ⊆T∞(E) of trees is of �nite character if for all t ∈T∞(E) it holds that
t ∈T if and only if for all l∈N: t[l]∈T . Identifying a predicate p :T∞(E)→B with
the family {t ∈T∞(E) |p(t)= 1} we arrive at the following de�nition.

De�nition 39. A predicate p :T∞(E)→B is of �nite character i�, for all t ∈T∞(E):
p(t)= 1 ⇔ ∀l∈N :p(t[l])= 1

Remark. Perhaps the equivalence

p(t)= 1 ⇔ ∀l∈N :p(t[l])= 1
is easier to recall in the form:

p(t) = 1⇒∀l∈N :p(t[l])= 1
p(t) = 0⇒∃l∈N :p(t[l])= 0:

Proposition 40. Suppose p :T∞(E)→B is �nitary and is of �nite character. Then
p is continuous.

Proof. Let t0; t1; : : : converge to an in�nite limit t. By Lemma 29 it su�ces to show
that p(t0); p(t1); : : : stabilizes to p(t).
Since p is �nitary, p(t)= 0. By assumption there is an l such that already p(t[l])

= 0. Since t0; t1; : : : converges to t; there exists an N such that, for all n¿N; tn[l] = t[l].
Therefore, for all n¿N; p(tn[l])= 0. By assumption, then also p(tn)= 0.

We end the section by reviewing instances of Proposition 40.

M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205 193

The following shows that a Cauchy transformer terminates if it never introduces
a node whose label is larger than an ancestor’s label with respect to some well-quasi-
order. This idea is used in a number of transformers [1, 19, 26, 38, 45] – see also
Section 7.

Proposition 41. Let (E;6) be a well-quasi-order. Then p :T∞(E)→B,

p(t)=
{
0 if ∃�; �i�∈ dom(t) : t(�)6t(�i�)
1 otherwise

is �nitary and continuous.

Proof. We �rst prove that p is �nitary. An in�nite tree t has, by K�onig’s Lemma
(remember that trees are �nitely branching), an in�nite branch, and since 6 is a well-
quasi-order, there must be a node � and a subsequent node �i� with t(�)6t(�i�), so
p(t) is false.
To prove continuity, we use Proposition 40. If p(t)= 1, then clearly also p(t[l])= 1

for all l. Moreover, if for all l it holds that p(t[l])= 1, then also p(t)= 1; indeed,
if p(t)= 0, i.e. t(�)6t(�i�) for some �; �i�∈ dom(t), then already p(t[l])= 0 where
l= |�i�|.

The following shows that a Cauchy transformer terminates if it never introduces a
node whose label is not smaller than its immediate ancestor’s label with respect to
some well-founded quasi-order.

Proposition 42. Let (E;6) be a well-founded quasi-order. Then p :T∞(E)→B;

p(t)=
{
0 if ∃�; �i∈ dom(t) : t(�)¿= t(�i)
1 otherwise

is �nitary and continuous.

Proof. Similar to the proof of Proposition 41.

Remark. Another formulation of the predicate in the preceding proposition is the
following:

p′(t)=
{
0 if ∃�; �i�∈ dom(t) : t(�)¿= t(�i�);
1 otherwise:

Indeed, when p(t)= 0 then also p′(t)= 0 (take �= �). Conversely, if p′(t)= 0 then
t(�)¿= t(�i�) for some �; i; �. Consider the nodes �; �i; : : : ; �i� on the branch from � to
�i�. We cannot have

t(�)¿t(�i)¿ · · ·¿t(�i�)
because this would entail t(�)¿t(�i�). Thus there must be a node
 and a child
j
with t(
)¿= t(
j). Therefore p(t)= 0.

194 M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205

In the following de�nition, a formulation similar to p′ is used.

The following generalization of the preceding proposition is used in some techniques
for ensuring global termination of partial deduction [29].

Proposition 43. Let {E1; : : : ; En} be a partition 10 of E and 61; : : : ;6n be well-
founded quasi-orders on E1; : : : ; En; respectively. Then p :T∞(E)→B;

p(t)=
{
0 if ∃�; �i�∈ dom(t); j∈{1; : : : ; n} : t(�); t(�i�)∈Ej ∧ t(�)¿=j t(�i�);
1 otherwise;

is �nitary and continuous.

Proof. Similar to the proof of Proposition 41.

The following shows that one can combine well-quasi-orders and well-founded quasi-
orders in a partition.

Proposition 44. Let {E1; E2} be a partition of E and let 61 be a well-quasi-order
on E1 and 62 a well-founded quasi-order on E2. Then p :T∞(E)→B;

p(t)=



0 if ∃�; �i�∈ dom(t) : t(�); t(�i�)∈E1 & t(�)61t(�i�);
0 if ∃�; �i∈ dom(t) : t(�); t(�i)∈E2 ∧ t(�)¿= 2 t(�i);
1 otherwise;

is �nitary and continuous.

Proof. Similar to the proof of Proposition 41.

The following shows that it su�ces to apply a �nitary and continuous predicate to
the interior part of a tree; that is, the leaves are not important.

De�nition 45. For t ∈T∞(E), de�nes the interior t0 ∈T∞(E) of t by
dom(t0) = (dom(t)\leaf (t)) ∪ {�}
t0(
) = t(
) for all
∈ dom(t0)

Proposition 46. Let p : T∞(E)→B be �nitary and continuous. Then also the map
q :T∞(E)→B de�ned by

q(t)=p(t0)

is �nitary and continuous.

Proof. Let p :T∞(E)→B be �nitary and continuous and de�ne q by q(t)=p(t0).

10 That is, E1; : : : ; En are sets with
⋃n
i=1
Ei =E and i 6= j⇒Ei ∩ Ej = ∅.

M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205 195

For in�nite t ∈T∞(E); t0 ∈T∞(E) is also in�nite, so q(t)=p(t0)= 0, and hence q
is �nitary.
To show that q is continuous it su�ces to show that the interior projection •0 :T∞(E)

→T∞(E) is continuous. For this end, �rst note, that for all t; u∈T∞(E) and all l∈N:
t[l+1]= u[l+1]⇒ t0[l] = u0[l]

Now, if t1; t2; : : : converges to t, there is, for any l∈N, and N ∈N such that for all
n¿N; tn[l+1]= t[l+1], i.e. t0n [l] = t

0[l]; so t01 ; t
0
2 ; : : : converges to t

0; as required.

Remark. The map •0 is continuous for a special reason: it satis�es a Lipschitz condi-
tion. 11

It is not hard to see that one can replace •0 in Proposition 46 by any continuous
map which maps in�nite trees to in�nite trees.
The following result states that it su�ces to apply a �nitary and continuous predicate

to the immediate subtrees of a tree; that is, that the root is not important.

De�nition 47. For t ∈T∞(E), the set of immediate subtrees of t is the possibly empty
set {s1; : : : ; sn} such that

dom(t)= {�} ∪ {1� | �∈ dom(s1)} ∪ · · · ∪ {n� | �∈ dom(sn)};
t(i�)= si(�):

We also say that t has arity n and write �i(t) for si for each i∈{1; : : : ; n}.

Proposition 48. Let p :T∞(E)→B be �nitary and continuous. Then also the map
q :T∞(E)→B de�ned by 12

q(t)=p(s1) ∧ · · · ∧ p(sn);
where {s1; : : : ; sn} are the immediate subtrees of t; is �nitary and continuous.

Proof. Let p; q :T∞(E)→B be de�ned as stated above.
To see that q is �nitary, consider some in�nite t ∈T∞(E). Then t has immediate

subtrees {s1; : : : ; sn} where at least one si is in�nite. Then p(si)= 0, so also q(t)= 0,
as required.
To prove continuity, let t0; t1; : : : converge to in�nite limit t. For some N ∈N the

trees tN ; tN+1; : : : all have the same arity n, which is also the arity of t. Moreover, for
each i∈{1; : : : ; n} the immediate subtrees �i(tN); �i(tN+1); : : : converge to �i(t).
11 A map f :X → Y from one metric space (X; dX) to another (Y; dY) satis�es a Lipschitz condition if there
is an r ∈R+ such that for any x; x′ ∈X : dY (f(x); f(x′))6r · dX (x; x′). Exercise: What does this amount to
in the speci�c metric space of trees?
12 We de�ne b1 ∧ · · · ∧ bn =0 if there is an i∈{1; : : : ; n} with bi =0, and b1 ∧ · · · ∧ bn =1 otherwise. In
particular, b1 ∧ · · · ∧ bn =1, if n=0.

196 M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205

For at least one i; �i(t) is in�nite, so p(�i(t))= 0, hence q(t)= 0. By continu-
ity, p(�i(tN)); p(�i(tN+1)); : : : converges to p(�i(t)), so for some K , we have that
p(�i(tK))= 0; p(�i(tK+1))= 0; : : : : Thus, q(tK)= 0; q(tK+1)= 0; : : : ; i.e. q(t0); q(t1); : : :
converges to q(t); as required.

7. Application: termination of positive supercompilation

In this section we address termination of the three variants of positive supercompila-
tion. We �rst prove that positive supercompilation P terminates. We do so by proving
that P is Cauchy and that P maintains a �nitary, continuous predicate; the desired
result then follows by Theorem 33. This occupies the �rst two subsections. The last
section considers the variants C and L as well as an algorithm for partial deduction.

7.1. P is Cauchy

We now prove that P is Cauchy; the idea is to use Proposition 38. Indeed, P always
either unfolds in a driving step or replaces in a generalization step a subtree by a new
leaf. The root label of the former subtree is in E, whereas the new leaf’s label is in
L\E. Thus, if we count elements of E as larger than elements of L\E, then we have
a measure that strictly decreases in generalization steps. The main problem is then to
show that the let-expressions introduced in generalization steps are proper, i.e. that they
really belong to L\E.
We will need the following lemma.

Lemma 49. Let eg ∈EH (V) be an msg of e1 and e2. Then

e16.e2 ⇔ e1
:= eg:

Proof. Routine veri�cation.

Proposition 50. P is Cauchy.

Proof. De�ne the relation ¡ on L by

l¡ l′ ⇔ l∈E ∨ l′ =∈E:

We have l� l′ i� l∈E and l′ =∈E. In other words, replacing an improper let-
expression (an element of E) by a proper let-expression (an element of L\E) strictly
decreases the order. It is a routine exercise to verify that ¡ is a well-founded quasi-
order.
We now show that for any t ∈T (L)

P(t)= t{
 := t′}

M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205 197

where, for some
∈ dom(t) and t′ ∈T (L), either
∈ leaf (t) and t(
)= t′(�), or t(
) �
t′(�). We proceed by case analysis of the operation performed by P.

1. P(t)= drive(t;
)= t{
 := t′}, where
∈ leaf (t). In this case, for certain expressions
e1; : : : ; en; t′= t(
)→ e1; : : : ; en. Then

t(
)= t′(�):

2. P(t)= abstract(t;
; �)= t{
 := let x1 = e1; : : : ; xn= en in e→}, where �∈ anc(t;
)
and (t(�)6. t(
) (downwards abstract). Since
 is not processed, t(�) :== t(
). By
de�nition of the abstract operation, t(
)= e{x1 := e1; : : : ; xn := en}. Since t(�)6. t(
),
also t(�) := e by Lemma 49. Therefore e 6= t(
), so n¿0. Thus

t(
) � let x1 = e1; : : : ; xn= en in e= t′(�):

3. P(t)= abstract(t;
; �)= t{
 := let x1 = e1; : : : ; xn= en in e→}, where
∈ anc(t; �)
and t(
) 66. t(�) (upwards abstract). By de�nition of the abstract operation, t(
)=
e{x1 := e1; : : : ; xn := en}. Since t(
) 66. t(�), also t(
) 6= e by Lemma 49. But t(
)=
e{x1 := e1; : : : ; xn := en}, so n¿0. Thus

t(
) � let x1 = e1; : : : ; xn= en in e= t′(�):

4. P(t)= split(t;
)= t{
 := let x1 = e1; : : : ; xn= en in h(x1; : : : ; xn)→} where, for some
�∈ anc(t;
); t(�)↔ t(
). Since
 is non-trivial and unprocessed, t(
) must have form
h(e1; : : : en), where h∈F ∪G. Here n¿0: if n=0, then t(
)= h(). Since t(�)E t(
),
also t(�)= h(), contradicting t(�) 6↔ t(
). Thus,

t(
)= h(e1; : : : ; en) � let x1 = e1; : : : ; xn= en in h(x1; : : : ; xn)= t′(�)

Now use Proposition 38.

7.2. P maintains a �nitary, continuous predicate

Now we prove that P maintains a �nitary, continuous predicate. The main idea is
to prove that P maintains a predicate of the form in Proposition 44, where the well-
quasi-order is E on non-trivial nodes (except possibly the leaves) and where we have
a certain well-founded quasi-order on the trivial nodes (except possibly in the root).
The following result, known as Kruskal’s Tree Theorem, is due to Higman [22] and

Kruskal [25]. Its classical proof is due to Nash-Williams [31].

Theorem 51. (EH (V); E) is a well-quasi-order, provided H is �nite.

Proof. Collapse all variables to one 0-ary operator and use the proof in [14].

In order to de�ne the well-founded quasi-order on trivial expressions we need the
following notions.

198 M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205

De�nition 52
1. De�ne the size |•| :E→N by

g(e0; e1; : : : ; em)	= 1 +	e0	+ · · ·+	em
f(e1; : : : ; em)	= 1 +	e1	+ · · ·+	em
c(e1; : : : ; em)	= 1 +	e1	+ · · ·+	em

|x|= 1
2. De�ne 1 :L→E by

1(let x1 = e1; : : : ; xn= en in e)= e{x1 := e1; : : : ; xn := en}:
(Here n¿0.)

3. De�ne w on L by

lw l′ ⇔ |l(l)|¿|l(l′)| ∨ (|l(l)|= |l(l′)| ∧ l(l).¿l(l′)):

Remark. We have

lA l′ ⇔ |l(l)|¿|l(l′)| ∨ (|l(l)|= |l(l′)| ∧ l(l)ml(l′)):
For example,

let x= e in c(x; y; z)A let x= e in c(x; y; y)

But

let x= e in c(x; y) 6A let x= e in c(x; z)
although

let x= e in c(x; y)w let x= e in c(x; z)

Lemma 53. The relation v is a well-founded quasi-order.

Proof. Routine veri�cation using the fact that 6. is a well-founded quasi-order.

We would like to show that for all trivial l∈L it holds that l⇒ l′ implied lA l′.
Unfortunately, this does not hold. In the following examples of l⇒ l′, we have lw l′,
but l 6A l′.

1. let x= e in x⇒ e;
2. let x= e in y⇒y;
3. let x=y in x⇒ x:

However, we can prove that P never introduces such let-expressions. To this end,
we de�ne the following set.

M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205 199

De�nition 54. The set L0 of restricted let-expressions is the set of all

let x1 = e1; : : : ; xn= en in e

where n=0 or

1. e 6∈X ; and
2. x1; : : : ; xn ∈ vars(e); and
3. e{x1 := e1; : : : ; xn := en} :== e.

In other words, l∈L0 if l∈E or l satis�es the above three conditions.

We can now prove that P always introduces let-expressions in L0. However, our
aim is to show that P as an apt on T∞(L) terminates, i.e. that P terminates on any
singleton tree t ∈T∞(L). In this initial singleton, the label may be an l∈L\L0. This
explains the exception concerning the root in the following lemma.

Lemma 55. Given singleton t0 ∈T∞(L) and i∈N; let t′=Pi(t0). Then; for all
�∈ dom(t′)\{”}: t(�)∈L0.

Proof. (By induction on i)
In the case i=0 there is nothing to prove, since P0(t0)= t0 is a singleton.
Now assume i= j + 1 where j¿0. Let t=Pj(t). We split into cases according to

the operation performed by P in the last step t′=P(t).

1. P(t)= drive(t;
)= t{
 := t′′}, where
∈ leaf (t). In this case, for certain expres-
sions e1; : : : ; en; t′′= t(
)→ e1; : : : ; en. The only new children are labeled e1; : : : ; en ∈
E so these are also in L0.

2. P(t)= abstract(t;
; �)= t{
 := let x1 = e1; : : : ; xn= en in e →}, where �∈ anc(t;
)
and t(�)6.t(
) (downwards abstract). We have to show that

let x1 = e1; : : : ; xn= en in e∈L0:

We show that each of the three conditions in the de�nition of L0 are satis�ed.
(a) Since t(�)6.t(
); e := t(�). Since t(�) 6∈X (if t(�)∈X , then � would have

been processed and have received no children), also e 6∈X .
(b) We have x1; : : : ; xn ∈ vars(e) by de�nition of the abstract operation.
(c) If e{x1 := e1; : : : ; xn := en} := e, then

t(
) = e{x1 := e1; : : : ; xn := en}
:= e

6. t(�)

and since also t(�)6.t(
), in fact t(�) := t(
), contradicting the fact that
 is not
processed.

200 M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205

3. P(t)= abstract(t;
; �)= t{
 := let x1 = e1; : : : ; xn= en in e →}, where
∈ anc(t; �)
and t(
)
.t(�) (upwards abstract). We have to show that

let x1 = e1; : : : ; xn= en in e∈L0:

(a) Since t(
) 6↔ t(�), the msg e of t(
) and t(�) is not a variable, i.e. e 6∈X .
(b) We have x1; : : : ; xn ∈ vars(e) by de�nition of the abstract operation.
(c) If e{x1 := e1; : : : ; xn := en} := e, then

t(
) = e{x1 := e1; : : : ; xn := en}
:= e

6. t(�)

However, if this had been the case, then we would have performed a downwards
abstract step.

4. P(t)= split(t;
)= t{
 := let x1 = e1; : : : ; xn= en in h(x1; : : : ; xn)→} where, for some
�∈ anc(t;
); t(�)↔ t(
). We have to show that

let x1 = e1; : : : ; xn= en in h(x1; : : : ; xn)∈L0:

(a) h(x1; : : : ; xn) 6∈X .
(b) x1; : : : ; xn ∈ vars(h(x1; : : : ; xn)):
(c) Since t(�)E t(
)= h(e1; : : : ; en) and t(�)↔ t(
), we have t(�)E ei for some

i. Since t(�) 6∈X , also ei 6∈X . Hence h(x1; : : : ; xn) 6 := h(e1; : : : ; en).
This concludes the proof.

Our well-founded quasi-order decreases when we reduce on restricted, trivial expres-
sions.

Lemma 56. For all trivial l∈L0:

l⇒ l′ implies lA l′:

Proof. Let l∈L0 be some trivial expression.

1. l= c(e1; : : : ; en)⇒ ei. Then

|l(l)| = |c(e1; : : : ; en)|
= 1 + |e1|+ · · ·+ |en|
¿ |ei|
= |l(ei)|

so lA ei.
2. l= let x1 = e1; : : : ; xn= en in e⇒ l′. We consider two cases.

M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205 201

(a) l′= ei for some i. In this case, notice that xi ∈ vars(e) and e 6= xi. Therefore,
|l(l)| = |e{x1 := e1; : : : ; xn := en}|

¿ |ei|
= |l(ei)|

so lA ei.
(b) l′= e. Then clearly |l(l)|¿|l(l′)|. The ei could all be variables or 0-ary
constructors in which case |l(l)|= |l(e)|. Fortunately, e{x1 := e1; : : : ; xn := en} is not
a renaming of e, that is, e{x1 := e1; : : : ; xn := en}m e, so

l(l) = e{x1 := e1; : : : ; xn := en}
m ei

= l(ei)

so again lA e.

Proposition 57. P maintains a �nitary; continuous predicate.

Proof. Consider the predicate q :T∞(L)→B de�ned by

q(t)=p(s1)∧ · · · ∧p(sn)
where {s1; : : : ; sn} are the immediate subtrees of t0, and where p :T∞(L)→B is
de�ned by:

p(t)=



0 if ∃�; �i�∈ dom(t) : t(�); t(�i�) are non-trivial ∧ t(�)E t(�i�);
0 if ∃�; �i∈ dom(t) : t(�); t(�i) are trivial ∧ t(�) 6A t(�i);
1 otherwise:

The sets of non-trivial and trivial expressions constitute a partition of L. Also, E
is a well-quasi-order on the set of non-trivial expressions (in fact, on all of E) and v
is a well-founded quasi-order on the set of trivial expressions (in fact, on all of L).
It follows by Proposition 44 that p is �nitary and continuous. By Proposition 48,

t 7→p(�1(t)) ∧ · · · ∧ p(�n(T))
where n is the arity of t is also �nitary and continuous. Finally, by Proposition 46, q
is �nitary and continuous.
It remains to show that P maintains q, i.e. that q(Pi(t0))= 1 for any singleton

t0 ∈T∞(L).
Given any t ∈T∞(L) and �∈ dom(t), we say that � is good in t if the following

conditions both hold:
(i) t(�) non-trivial ∧� 6∈ leaf (t)⇒∀�∈ relanc(t; �) : t(�) 5 t(�);
(ii) �= �ji ∧ t(�j) trivial⇒ t(�j)A t(�).

We say that t is good if all �∈ dom(t) are good in t.

202 M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205

It is easy to see that q(t)= 1 if t is good. The converse does not hold. For instance,
for goodness we require t(�j)A t(�ji) when �j is trivial, even though �ji is non-trivial.
For q to be true, we only require t(�j)A t(�ji) when both �j and �ji are trivial.
In other words, we strengthen the induction hypothesis. This is done to make it

easier to prove that t(�j)A t(�ji) after a step that changes �ji from being non-trivial
to being trivial.
In conclusion, it su�ces to show for any singleton t0 ∈T∞(L) that Pi(t0) is good

for all i. We proceed by induction on i.
For i=0, (i)–(ii) are both vacuously satis�ed since t0 consists of a single leaf.
For i¿0, we split into cases according to the operation performed by P on Pi−1(t0).

Before considering these cases, note that by the de�nition of goodness, if t ∈T∞(L)
is good,
∈ dom(t), and t′ ∈T∞(L), then t{
 := t′} is good too, provided
� is good
in t{
 := t′} for all �∈ dom(t′).
For brevity, let t=Pi−1(t0).

1. P(t)= drive(t;
)= t{
 := t′}, where
∈ leaf (t); t′= t(
) → e1; : : : ; en, and
{e1; : : : ; en}= {e | t(
)⇒ e}.
We must show that
;
1; : : : ;
n are good in P(t).
To see that
 is good in P(t), note that if t(
) is non-trivial, then the algorithm
ensures that condition (i) is satis�ed. Condition (ii) follows from the induction
hypothesis.
To see that
i is good in P(t), note that condition (i) is vacuously satis�ed. More-
over, when l⇒ e and l is trivial, also lA e by Lemmas 55 and 56, so condition
(ii) holds as well.

2. P(t)= abstract(t;
; �)= t{
 := let x1 = e1; : : : ; xn= en in e →}, where �∈ anc(t;
).
We must show that
 is good in P(t). Condition (i) holds vacuously, and (ii)
follows from the induction hypothesis and l(t(
))= l(let x1 = e1; : : : ; xn= en in e).

The remaining two cases are similar to the preceding case.

Theorem 58. P terminates.

Proof. By Theorem 33 and Propositions 50 and 57.

To show that C terminates we need the following.

Corollary 59. The relation E∗ is a well-quasi order on E.

Proof. Given an in�nite sequence e0; e1; : : : ∈E there must be an in�nite subsequence
ei0 ; ei1 ; : : : such that B(ei0) = B(ei1) = : : : . By Theorem 51, 13 there are k and l such
that eik E eil and then eikE

∗ eil , as required.

13 Recall that E = EF∪G∪C(V) where F; G; C are �nite.

M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205 203

Theorem 60. C terminates.

Proof. The proofs of Propositions 50 and 57 can be repeated with E∗ in place of E.

Theorem 61. L terminates.

Proof. Left as a challenging exercise.

Martens and Gallagher show, essentially, that an abstract program transformer termi-
nates if it maintains a predicate of the form in Proposition 43 and always either adds
children to a node or replaces a subtree with root label e by a new node whose label
e′ is in the same partition Ej as e and e¿j e′. In our setting this result follows from
Propositions 38 and 43 (by Theorem 33).
Martens and Gallagher then go on to show that a certain generic partial deduction

algorithm always terminates; this result follows from the above more general result.

8. Concluding remarks

We have presented a framework for proving termination of program transformers
and used it to prove termination of positive supercompilers and – very brie
y – of a
generic algorithm for partial deduction. It would be interesting to develop the latter
proof into proofs of termination of other partial deduction algorithms. It would also
be interesting to apply the framework to prove termination of other transformers, e.g.
partial evaluators. These ideas are left for future work.
We hope to have demonstrated that termination proofs using our framework are

independent of many of the particularities of the transformer, e.g. the language in
which the programs to be transformed are written. Indeed, we have been able to develop
results stating such properties as “it is �ne to ignore the leaves of the tree in whatever
test the transformer makes” (Proposition 46). Such results belong to a general theory
of termination of apts, not to the development of one speci�c apt.
Instead of metric spaces we could have based our presentation on the less well-

known projection spaces – see, e.g. [16]. Although these seem closer to the intuition
behind our transformation trees, we have stuck to metric spaces since these are better
known.

Acknowledgements

This work grew out of joint work with Robert Gl�uck. I am indebted to Nils Ander-
sen and Klaus Grue for discussions about metric spaces. Thanks to Maria Alpuente,
Nils Andersen, Robert Gl�uck, Laura Lafave, Michael Leuschel, Bern Martens, and Jens
Peter Secher for comments to an early version of this paper.

204 M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205

References

[1] M. Alpuente, M. Falaschi, G. Vidal, Narrowing-driven partial evaluation of functional logic programs,
in: H.R. Nielson (Ed.), European Symp. on Programming, Lecture Notes in Computer Science,
Vol. 1058, Springer, Berlin, 1996, pp. 46–61.

[2] A. Arnold, M. Nivat, Metric interpretations of in�nite trees and semantics of non deterministic recursive
programs, Theoret. Comput. Sci. 11 (1980) 181–205.

[3] A. Arnold, M. Nivat, The metric space of in�nite trees. Algebraic and topological properties Fund.
Inform. III(4) (1980) 445–476.

[4] R. Bird, Tabulation techniques for recursive programs, ACM Comput. Surv. 12 (4) (1980) 403–417.
[5] D. BjHrner, A.P. Ershov, N.D. Jones (Eds.), Partial Evaluation and Mixed Computation, North-Holland,

Amsterdam, 1988.
[6] S.L. Bloom, All solutions of a system of recursion equations in in�nite trees and other contraction

theories, J. Comput. System Sci. 27 (1983) 225–255.
[7] S.L. Bloom, C.C. Elgot, J.B Wright, Vector iteration in pointed iterative theories, SIAM J. Comput.

9 (3) (1980) 525–540.
[8] S.L. Bloom, D. Patterson, Easy solutions are hard to �nd, in Colloquium on Trees in Algebra and

Programming, Lecture Notes in Computer Science, vol. 112, Springer, Berlin, 1981, pp. 135–146.
[9] S.L. Bloom, R. Tindell, Compatible orderings on the metric theory of trees, SIAM J. Comput. 9 (4)

(1980) 683–691.
[10] M. Bruynooghe, D. De Schreye, B. Krekels, Compiling control, J. Logic Programm., 6 (1989) 135–162.
[11] R.M. Burstall, J. Darlington, A transformation system for developing recursive programs, J. Assoc.

Comput. Mach. 24 (1) (1977) 44–67.
[12] B. Courcelle, Fundamental properties of in�nite trees, Theoret. Comput. Sci. 25 (1983) 95–169.
[13] O. Danvy, R. Gl�uck, P. Thiemann (Eds.), Partial Evaluation, Lecture Notes in Computer Science,

Vol. 1110, Springer, Berlin, 1996.
[14] N. Dershowitz, Termination of rewriting, J. Symbolic Comput. 3 (1987).
[15] N. Dershowitz, J.-P. Jouannaud, Rewrite systems, in: J. van Leeuwen (Ed.), Handbook of Theoretical

Computer Science, Elsevier, Amsterdam, 1990, pp. 244–320.
[16] H. Ehrig, F. Parisi-Presicce, P. Boehm, C. Riecko�, C. Dimitrovici, M. Gro�e-Rohde, Combining data

type and recursive process speci�cations using projection algebras, Theoret. Comput. Sci. 71 (1990)
347–380.

[17] A. Ferguson, P.L. Wadler, When will deforestation stop? in Glasgow Workshop on Functional
Programming, 1988, pp. 39–56.

[18] Y. Futamura, K. Nogi, Generalized partial computation, in: D. BjHrner, A.P. Ershov, N.D. Jones (Eds.),
Partial Evaluation and Mixed Computation, North-Holland, Amsterdam, 1988, pp. 133–151.

[19] R. Gl�uck, J. JHrgensen, B. Martens, M.H. SHrensen, Controlling conjunctive partial deduction, in:
H. Kuchen, D.S. Swierstra (Eds.), Programming Languages: Implementations, Logics and Programs,
Lecture Notes in Computer Science, Vol. 1140, Springer, Berlin, 1996, pp. 137–151.

[20] R. Gl�uck, M.H. SHrensen, Partial deduction and driving are equivalent, in: M. Hermenegildo, J. Penjam
(Eds.), Programming Languages: Implementations, Logics and Programs, Lecture Notes in Computer
Science, Vol. 844, Springer, Berlin, 1994, pp. 165–181.

[21] R. Gl�uck, M.H. SHrensen, A roadmap to metacomputation by supercompilation, in: O. Danvy,
R. Gl�uck, P. Thiemann (Eds.), Partial Evaluation, Lecture Notes in Computer Science, Vol. 1110,
Springer, Berlin, 1996, pp. 137–160.

[22] G. Higman, Ordering by divisibility in abstract algebras, Proc. London Math. Soc. 3 (2) (1952) 326–336.
[23] N.D. Jones, The essence of program transformation by partial evaluation and driving, in: N.D. Jones,

M. Hagiya, M. Sato (Eds.), Logic, Language, and Computation, Lecture Notes in Computer Science,
Vol. 792, Springer, Berlin, 1994, pp. 206–224. Festschrift in honor of S. Takasu.

[24] N.D. Jones, C.K. Gomard, P. Sestoft, Partial Evaluation and Automatic Program Generation, Prentice-
Hall, Englewood Cli�s, NJ, 1993.

[25] J.B. Kruskal, Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture, Trans. Amer. Math.
Soc. 95 (1960) 210–225.

[26] M. Leuschel, B. Martens, Global control for partial deduction through characteristic atoms and global
trees, in: O. Danvy, R. Gl�uck, P. Thiemann (Eds.), Partial Evaluation, Lecture Notes in Computer
Science, Vol. 1110, Springer, Berlin, 1996, pp. 263–283.

M.H.B. S�rensen / Science of Computer Programming 37 (2000) 163–205 205

[27] J.W. Lloyd, Foundations of Logic Programming, Springer, Berlin, 1984.
[28] M. Main, A. Melton, M. Mislove, D. Schmidt (Eds.), Mathematical Foundations of Programming

Language Semantics, Lecture Notes in Computer Science, Vol. 298, Springer, Berlin, 1987.
[29] B. Martens, J. Gallagher, Ensuring global termination of partial deduction while allowing
exible

polyvariance, in: L. Sterling (Ed.), Int. Conf. on Logic Programming, MIT Press, Cambridge, MA,
1995, pp. 597–613.

[30] J. Mycielski, W. Taylor, A compacti�cation of the algebra of terms, Algebra Universalis 6 (1976)
159–163.

[31] C.St.J.A. Nash-Williams, On well-quasi-ordering �nite trees, Proc. Cambridge Math. Soc. 59 (1963)
833–835.

[32] A. Pettorossi, A powerful strategy for deriving e�cient programs by transformation, in ACM Conf. on
Lisp and Functional Programming, ACM Press, New York, 1984, pp. 273–281.

[33] A. Pettorossi, M. Proietti, A comparative revisitation of some program transformation techniques, in:
O. Danvy, R. Gl�uck, P. Thiemann (Eds.), Partial Evaluation, Lecture Notes in Computer Science,
Vol. 1110, Springer, Berlin, 1996, pp. 355–385.

[34] M. Proietti, A. Pettorossi, The loop absorption and the generalization strategies for the development of
logic programs and partial deduction, J. Logic Programm. 16 (1993) 123–161.

[35] W. Rudin, Principles of Mathematical Analysis, Mathematics Series, 3rd Edition, McGraw-Hill,
New York, 1976.

[36] E. Ruf, D. Weise, On the specialization of online program specializers, J. Funct. Programm. 3 (3)
(1993) 251–281.

[37] M.B. Smyth, Topology, in: S. Abramsky, D.M. Gabbay, T.S.E. Maibaum (Eds.), Handbook of Logic
in Computer Science, Vol. II, Oxford University Press, Oxford, 1992, pp. 641–761.

[38] M.H. SHrensen, R. Gl�uck, An algorithm of generalization in positive supercompilation, in: J.W. Lloyd
(Ed.), Logic Programming: Proc. 1995 Int. Symp., MIT Press, Cambridge, MA, 1995, pp. 465–479.

[39] M.H. SHrensen, R. Gl�uck, N.D. Jones, Towards unifying deforestation, supercompilation, partial
evaluation, and generalized partial computation, in: D. Sannella (Ed.), European Symposium on
Programming, Lecture Notes in Computer Science, Vol. 788, Springer, Berlin, 1994, pp. 485–500.

[40] M.H. SHrensen, R. Gl�uck, N.D. Jones, A positive supercompiler, J. Funct. Programm. 6 (6) (1996)
811–838.

[41] M.H.B. SHrensen, Convergence of program transformers in the metric space of trees, in: J. Jeuring
(Ed.), Mathematics of Program Construction, Lecture Notes in Computer Science, Vol. 1422, Springer,
Berlin, 1998, pp. 315–337.

[42] H. Tamaki, T. Sato, Unfold=fold transformation of logic programs, in: S.-A. T�arnlund (Ed.), Int. Conf.
on Logic Programming, Uppsala University, 1984, pp. 127–138.

[43] V.F. Turchin, The concept of a supercompiler, ACM Trans. Programm. Lang. Systems 8 (3) (1986)
292–325.

[44] V.F. Turchin, The algorithm of generalization in the supercompiler, in: D. BjHrner, A.P. Ershov,
N.D. Jones (Eds.), Partial Evaluation and Mixed Computation, North-Holland, Amsterdam, 1988,
pp. 531–549.

[45] V.F. Turchin, On generalization of lists and strings in supercompilation, Tech. Report CSc. TR 96-002,
City College of the City University of New York, 1996.

[46] P.L. Wadler, Deforestation: transforming programs to eliminate intermediate trees, Theoret. Comput.
Sci. 73 (1990) 231–248.

[47] D. Weise, R. Conybeare, E. Ruf, S. Seligman, Automatic online partial evaluation, in: J. Hughes (Ed.),
Conf. on Functional Programming and Computer Architecture, Lecture Notes in Computer Science,
Vol. 523, Springer, Berlin, 1991, pp. 165–191.

