1,311 research outputs found

    Modeling Human Visual Search Performance on Realistic Webpages Using Analytical and Deep Learning Methods

    Full text link
    Modeling visual search not only offers an opportunity to predict the usability of an interface before actually testing it on real users, but also advances scientific understanding about human behavior. In this work, we first conduct a set of analyses on a large-scale dataset of visual search tasks on realistic webpages. We then present a deep neural network that learns to predict the scannability of webpage content, i.e., how easy it is for a user to find a specific target. Our model leverages both heuristic-based features such as target size and unstructured features such as raw image pixels. This approach allows us to model complex interactions that might be involved in a realistic visual search task, which can not be easily achieved by traditional analytical models. We analyze the model behavior to offer our insights into how the salience map learned by the model aligns with human intuition and how the learned semantic representation of each target type relates to its visual search performance.Comment: the 2020 CHI Conference on Human Factors in Computing System

    Face Centered Image Analysis Using Saliency and Deep Learning Based Techniques

    Get PDF
    Image analysis starts with the purpose of configuring vision machines that can perceive like human to intelligently infer general principles and sense the surrounding situations from imagery. This dissertation studies the face centered image analysis as the core problem in high level computer vision research and addresses the problem by tackling three challenging subjects: Are there anything interesting in the image? If there is, what is/are that/they? If there is a person presenting, who is he/she? What kind of expression he/she is performing? Can we know his/her age? Answering these problems results in the saliency-based object detection, deep learning structured objects categorization and recognition, human facial landmark detection and multitask biometrics. To implement object detection, a three-level saliency detection based on the self-similarity technique (SMAP) is firstly proposed in the work. The first level of SMAP accommodates statistical methods to generate proto-background patches, followed by the second level that implements local contrast computation based on image self-similarity characteristics. At last, the spatial color distribution constraint is considered to realize the saliency detection. The outcome of the algorithm is a full resolution image with highlighted saliency objects and well-defined edges. In object recognition, the Adaptive Deconvolution Network (ADN) is implemented to categorize the objects extracted from saliency detection. To improve the system performance, L1/2 norm regularized ADN has been proposed and tested in different applications. The results demonstrate the efficiency and significance of the new structure. To fully understand the facial biometrics related activity contained in the image, the low rank matrix decomposition is introduced to help locate the landmark points on the face images. The natural extension of this work is beneficial in human facial expression recognition and facial feature parsing research. To facilitate the understanding of the detected facial image, the automatic facial image analysis becomes essential. We present a novel deeply learnt tree-structured face representation to uniformly model the human face with different semantic meanings. We show that the proposed feature yields unified representation in multi-task facial biometrics and the multi-task learning framework is applicable to many other computer vision tasks

    Salient Object Detection Techniques in Computer Vision-A Survey.

    Full text link
    Detection and localization of regions of images that attract immediate human visual attention is currently an intensive area of research in computer vision. The capability of automatic identification and segmentation of such salient image regions has immediate consequences for applications in the field of computer vision, computer graphics, and multimedia. A large number of salient object detection (SOD) methods have been devised to effectively mimic the capability of the human visual system to detect the salient regions in images. These methods can be broadly categorized into two categories based on their feature engineering mechanism: conventional or deep learning-based. In this survey, most of the influential advances in image-based SOD from both conventional as well as deep learning-based categories have been reviewed in detail. Relevant saliency modeling trends with key issues, core techniques, and the scope for future research work have been discussed in the context of difficulties often faced in salient object detection. Results are presented for various challenging cases for some large-scale public datasets. Different metrics considered for assessment of the performance of state-of-the-art salient object detection models are also covered. Some future directions for SOD are presented towards end
    • …
    corecore