2 research outputs found

    Open-ended Search through Minimal Criterion Coevolution

    Get PDF
    Search processes guided by objectives are ubiquitous in machine learning. They iteratively reward artifacts based on their proximity to an optimization target, and terminate upon solution space convergence. Some recent studies take a different approach, capitalizing on the disconnect between mainstream methods in artificial intelligence and the field\u27s biological inspirations. Natural evolution has an unparalleled propensity for generating well-adapted artifacts, but these artifacts are decidedly non-convergent. This new class of non-objective algorithms induce a divergent search by rewarding solutions according to their novelty with respect to prior discoveries. While the diversity of resulting innovations exhibit marked parallels to natural evolution, the methods by which search is driven remain unnatural. In particular, nature has no need to characterize and enforce novelty; rather, it is guided by a single, simple constraint: survive long enough to reproduce. The key insight is that such a constraint, called the minimal criterion, can be harnessed in a coevolutionary context where two populations interact, finding novel ways to satisfy their reproductive constraint with respect to each other. Among the contributions of this dissertation, this approach, called minimal criterion coevolution (MCC), is the primary (1). MCC is initially demonstrated in a maze domain (2) where it evolves increasingly complex mazes and solutions. An enhancement to the initial domain (3) is then introduced, allowing mazes to expand unboundedly and validating MCC\u27s propensity for open-ended discovery. A more natural method of diversity preservation through resource limitation (4) is introduced and shown to maintain population diversity without comparing genetic distance. Finally, MCC is demonstrated in an evolutionary robotics domain (5) where it coevolves increasingly complex bodies with brain controllers to achieve principled locomotion. The overall benefit of these contributions is a novel, general, algorithmic framework for the continual production of open-ended dynamics without the need for a characterization of behavioral novelty

    Automatic Modularization by Speciation

    No full text
    Real-world problems are often too difficult to be solved by a single monolithic system. There are many examples of natural and artificial systems which show that a modular approach can reduce the total complexity of the system while solving a difficult problem satisfactorily. The success of modular artificial neural networks in speech and image processing is a typical example. However, designing a modular system is a difficult task. It relies heavily on human experts and prior knowledge about the problem. There is no systematic and automatic way to form a modular system for a problem. This paper proposes a novel evolutionary learning approach to designing a modular system automatically, without human intervention. Our starting point is speciation, using a technique based on fitness sharing. While speciation in genetic algorithms is not new, no effort has been made towards using a speciated population as a complete modular system. We harness the specialized expertise in the species of a..
    corecore