2,150 research outputs found

    Towards a relation extraction framework for cyber-security concepts

    Full text link
    In order to assist security analysts in obtaining information pertaining to their network, such as novel vulnerabilities, exploits, or patches, information retrieval methods tailored to the security domain are needed. As labeled text data is scarce and expensive, we follow developments in semi-supervised Natural Language Processing and implement a bootstrapping algorithm for extracting security entities and their relationships from text. The algorithm requires little input data, specifically, a few relations or patterns (heuristics for identifying relations), and incorporates an active learning component which queries the user on the most important decisions to prevent drifting from the desired relations. Preliminary testing on a small corpus shows promising results, obtaining precision of .82.Comment: 4 pages in Cyber & Information Security Research Conference 2015, AC

    PACE: Pattern Accurate Computationally Efficient Bootstrapping for Timely Discovery of Cyber-Security Concepts

    Full text link
    Public disclosure of important security information, such as knowledge of vulnerabilities or exploits, often occurs in blogs, tweets, mailing lists, and other online sources months before proper classification into structured databases. In order to facilitate timely discovery of such knowledge, we propose a novel semi-supervised learning algorithm, PACE, for identifying and classifying relevant entities in text sources. The main contribution of this paper is an enhancement of the traditional bootstrapping method for entity extraction by employing a time-memory trade-off that simultaneously circumvents a costly corpus search while strengthening pattern nomination, which should increase accuracy. An implementation in the cyber-security domain is discussed as well as challenges to Natural Language Processing imposed by the security domain.Comment: 6 pages, 3 figures, ieeeTran conference. International Conference on Machine Learning and Applications 201

    NLP-Based Techniques for Cyber Threat Intelligence

    Full text link
    In the digital era, threat actors employ sophisticated techniques for which, often, digital traces in the form of textual data are available. Cyber Threat Intelligence~(CTI) is related to all the solutions inherent to data collection, processing, and analysis useful to understand a threat actor's targets and attack behavior. Currently, CTI is assuming an always more crucial role in identifying and mitigating threats and enabling proactive defense strategies. In this context, NLP, an artificial intelligence branch, has emerged as a powerful tool for enhancing threat intelligence capabilities. This survey paper provides a comprehensive overview of NLP-based techniques applied in the context of threat intelligence. It begins by describing the foundational definitions and principles of CTI as a major tool for safeguarding digital assets. It then undertakes a thorough examination of NLP-based techniques for CTI data crawling from Web sources, CTI data analysis, Relation Extraction from cybersecurity data, CTI sharing and collaboration, and security threats of CTI. Finally, the challenges and limitations of NLP in threat intelligence are exhaustively examined, including data quality issues and ethical considerations. This survey draws a complete framework and serves as a valuable resource for security professionals and researchers seeking to understand the state-of-the-art NLP-based threat intelligence techniques and their potential impact on cybersecurity

    Constructing a vulnerability knowledge graph

    Get PDF
    Attackers exploiting vulnerabilities in software can cause severe damage to affected victims. Despite continuous efforts of security experts, the number of reported vulnerabilities is increasing. As of January 2022, the National Vulnerability Database consists of more than 160 000 vulnerability records of known vulnerabilities. These vulnerability records contain data such as vulnerability classification, severity metrics, affected software products, and textual descriptions describing the vulnerability. The National Vulnerability Database provides a high-quality data source for security analysts learning about known vulnerabilities. However, maintaining this database comes at a high labor cost for the security experts involved. Knowledge graphs is a semantic technology which has the potential to aid in this task. In our work we explore how knowledge graphs are used in the broader field of cyber security. We then propose our own vulnerability knowledge graph for vulnerability assessment where we combine techniques from NLP with Knowledge graph embedding. Although future work on constructing ground truth data is necessary to evaluate and benchmark our experiments, our initial results show entity prediction results of 0.76 in Hits@10 score.M-D
    • …
    corecore