488 research outputs found

    Clinically applicable artificial intelligence system for dental diagnosis with CBCT

    Get PDF
    Abstract In this study, a novel AI system based on deep learning methods was evaluated to determine its real-time performance of CBCT imaging diagnosis of anatomical landmarks, pathologies, clinical effectiveness, and safety when used by dentists in a clinical setting. The system consists of 5 modules: ROI-localization-module (segmentation of teeth and jaws), tooth-localization and numeration-module, periodontitis-module, caries-localization-module, and periapical-lesion-localization-module. These modules use CNN based on state-of-the-art architectures. In total, 1346 CBCT scans were used to train the modules. After annotation and model development, the AI system was tested for diagnostic capabilities of the Diagnocat AI system. 24 dentists participated in the clinical evaluation of the system. 30 CBCT scans were examined by two groups of dentists, where one group was aided by Diagnocat and the other was unaided. The results for the overall sensitivity and specificity for aided and unaided groups were calculated as an aggregate of all conditions. The sensitivity values for aided and unaided groups were 0.8537 and 0.7672 while specificity was 0.9672 and 0.9616 respectively. There was a statistically significant difference between the groups (p = 0.032). This study showed that the proposed AI system significantly improved the diagnostic capabilities of dentists

    CTooth+: A Large-scale Dental Cone Beam Computed Tomography Dataset and Benchmark for Tooth Volume Segmentation

    Full text link
    Accurate tooth volume segmentation is a prerequisite for computer-aided dental analysis. Deep learning-based tooth segmentation methods have achieved satisfying performances but require a large quantity of tooth data with ground truth. The dental data publicly available is limited meaning the existing methods can not be reproduced, evaluated and applied in clinical practice. In this paper, we establish a 3D dental CBCT dataset CTooth+, with 22 fully annotated volumes and 146 unlabeled volumes. We further evaluate several state-of-the-art tooth volume segmentation strategies based on fully-supervised learning, semi-supervised learning and active learning, and define the performance principles. This work provides a new benchmark for the tooth volume segmentation task, and the experiment can serve as the baseline for future AI-based dental imaging research and clinical application development

    3DTeethSeg'22: 3D Teeth Scan Segmentation and Labeling Challenge

    Full text link
    Teeth localization, segmentation, and labeling from intra-oral 3D scans are essential tasks in modern dentistry to enhance dental diagnostics, treatment planning, and population-based studies on oral health. However, developing automated algorithms for teeth analysis presents significant challenges due to variations in dental anatomy, imaging protocols, and limited availability of publicly accessible data. To address these challenges, the 3DTeethSeg'22 challenge was organized in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2022, with a call for algorithms tackling teeth localization, segmentation, and labeling from intraoral 3D scans. A dataset comprising a total of 1800 scans from 900 patients was prepared, and each tooth was individually annotated by a human-machine hybrid algorithm. A total of 6 algorithms were evaluated on this dataset. In this study, we present the evaluation results of the 3DTeethSeg'22 challenge. The 3DTeethSeg'22 challenge code can be accessed at: https://github.com/abenhamadou/3DTeethSeg22_challengeComment: 29 pages, MICCAI 2022 Singapore, Satellite Event, Challeng

    A Cone Beam Computed Tomography Annotation Tool for Automatic Detection of the Inferior Alveolar Nerve Canal

    Get PDF
    In recent years, deep learning has been employed in several medical fields, achieving impressive results. Unfortunately, these algorithms require a huge amount of annotated data to ensure the correct learning process. When dealing with medical imaging, collecting and annotating data can be cumbersome and expensive. This is mainly related to the nature of data, often three-dimensional, and to the need for well-trained expert technicians. In maxillofacial imagery, recent works have been focused on the detection of the Inferior Alveolar Nerve (IAN), since its position is of great relevance for avoiding severe injuries during surgery operations such as third molar extraction or implant installation. In this work, we introduce a novel tool for analyzing and labeling the alveolar nerve from Cone Beam Computed Tomography (CBCT) 3D volumes

    Machine learning methods as an aid in planning orthodontic treatment on the example of Cone-Beam Computed Tomography analysis: a literature review

    Get PDF
    Convolutional neural networks (CNNs) are used in many areas of computer vision, such as object tracking and recognition, security, military, and biomedical image analysis. In this work, we describe the current methods, the architectures of deep convolutional neural networks used in CBCT. Literature from 2000-2020 from the PubMed database, Google Scholar, was analyzed. Account has been taken of publications in English that describe architectures of deep convolutional neural networks used in CBCT. The results of the reviewed studies indicate that deep learning methods employed in orthodontics can be far superior in comparison to other high-performing algorithms
    corecore