8 research outputs found

    Security Assurance Cases -- State of the Art of an Emerging Approach

    Full text link
    Security Assurance Cases (SAC) are a form of structured argumentation used to reason about the security properties of a system. After the successful adoption of assurance cases for safety, SACs are getting significant traction in recent years, especially in safety-critical industries (e.g., automotive), where there is an increasing pressure to be compliant with several security standards and regulations. Accordingly, research in the field of SAC has flourished in the past decade, with different approaches being investigated. In an effort to systematize this active field of research, we conducted a systematic literature review (SLR) of the existing academic studies on SAC. Our review resulted in an in-depth analysis and comparison of 51 papers. Our results indicate that, while there are numerous papers discussing the importance of security assurance cases and their usage scenarios, the literature is still immature with respect to concrete support for practitioners on how to build and maintain a SAC. More importantly, even though some methodologies are available, their validation and tool support is still lacking

    A GENERAL FRAMEWORK FOR CHARACTERIZING AND EVALUATING ATTACKER MODELS FOR CPS SECURITY ASSESSMENT

    Get PDF
    Characterizing the attacker’s perspective is essential to assessing the security posture and resilience of cyber-physical systems. The attacker’s perspective is most often achieved by cyber-security experts (e.g., red teams) who critically challenge and analyze the system from an adversarial stance. Unfortunately, the knowledge and experience of cyber-security experts can be inconsistent leading to situations where there are gaps in the security assessment of a given system. Structured security review processes (such as TAM, Mission Aware, STPA-SEC, and STPA-SafeSec) attempt to standardize the review processes to impart consistency across an organization or application domain. However, with most security review processes, the attackers’ perspectives are ad hoc and often lack structure. Attacker modeling is a potential solution but there is a lack of uniformity in published literature and a lack of structured methods to integrate the attacker perspective into established security review processes. This dissertation proposes a generalized framework for characterizing and evaluating attacker models for CPS security assessment. We developed this framework from a structured literature survey on attacker model characteristics which we used to create an ontology of attacker models from a context of security assessment. This generalized framework facilitates the characterization and functional representation of attacker models, leveraged in a novel scalable integration workflow. This workflow leverages an intermediate functional representation module to integrate attacker models into a security review process. In conclusion, we demonstrate the efficacy of our attacker modeling framework through a use case in which we integrate an attacker model into an established security review process

    Threat Assessment for Multistage Cyber Attacks in Smart Grid Communication Networks

    Get PDF
    In smart grids, managing and controlling power operations are supported by information and communication technology (ICT) and supervisory control and data acquisition (SCADA) systems. The increasing adoption of new ICT assets in smart grids is making smart grids vulnerable to cyber threats, as well as raising numerous concerns about the adequacy of current security approaches. As a single act of penetration is often not sufficient for an attacker to achieve his/her goal, multistage cyber attacks may occur. Due to the interdependence between the power grid and the communication network, a multistage cyber attack not only affects the cyber system but impacts the physical system. This thesis investigates an application-oriented stochastic game-theoretic cyber threat assessment framework, which is strongly related to the information security risk management process as standardized in ISO/IEC 27005. The proposed cyber threat assessment framework seeks to address the specific challenges (e.g., dynamic changing attack scenarios and understanding cascading effects) when performing threat assessments for multistage cyber attacks in smart grid communication networks. The thesis looks at the stochastic and dynamic nature of multistage cyber attacks in smart grid use cases and develops a stochastic game-theoretic model to capture the interactions of the attacker and the defender in multistage attack scenarios. To provide a flexible and practical payoff formulation for the designed stochastic game-theoretic model, this thesis presents a mathematical analysis of cascading failure propagation (including both interdependency cascading failure propagation and node overloading cascading failure propagation) in smart grids. In addition, the thesis quantifies the characterizations of disruptive effects of cyber attacks on physical power grids. Furthermore, this thesis discusses, in detail, the ingredients of the developed stochastic game-theoretic model and presents the implementation steps of the investigated stochastic game-theoretic cyber threat assessment framework. An application of the proposed cyber threat assessment framework for evaluating a demonstrated multistage cyber attack scenario in smart grids is shown. The cyber threat assessment framework can be integrated into an existing risk management process, such as ISO 27000, or applied as a standalone threat assessment process in smart grid use cases

    Security in Embedded Systems: A Model-Based Approach with Risk Metrics

    Full text link

    Automatic Generation of Security Argument Graphs

    No full text
    Graph-based assessment formalisms have proven to be useful in the safety, dependability, and security communities to help stakeholders manage risk and maintain appropriate documentation throughout the system lifecycle. In this paper, we propose a set of methods to automatically construct security argument graphs, a graphical formalism that integrates various security-related information to argue about the security level of a system. Our approach is to generate the graph in a progressive manner by exploiting logical relationships among pieces of diverse input information. Using those emergent argument patterns as a starting point, we define a set of extension templates that can be applied iteratively to grow a security argument graph. Using a scenario from the electric power sector, we demonstrate the graph generation process and highlight its application for system security evaluation in our prototype software tool, CyberSAGE.Comment: 10 pages, 8 figures, 1 table and 2 algorithm
    corecore