19,078 research outputs found

    Crowdsourcing Multiple Choice Science Questions

    Full text link
    We present a novel method for obtaining high-quality, domain-targeted multiple choice questions from crowd workers. Generating these questions can be difficult without trading away originality, relevance or diversity in the answer options. Our method addresses these problems by leveraging a large corpus of domain-specific text and a small set of existing questions. It produces model suggestions for document selection and answer distractor choice which aid the human question generation process. With this method we have assembled SciQ, a dataset of 13.7K multiple choice science exam questions (Dataset available at http://allenai.org/data.html). We demonstrate that the method produces in-domain questions by providing an analysis of this new dataset and by showing that humans cannot distinguish the crowdsourced questions from original questions. When using SciQ as additional training data to existing questions, we observe accuracy improvements on real science exams.Comment: accepted for the Workshop on Noisy User-generated Text (W-NUT) 201

    Utilizing sub-topical structure of documents for information retrieval.

    Get PDF
    Text segmentation in natural language processing typically refers to the process of decomposing a document into constituent subtopics. Our work centers on the application of text segmentation techniques within information retrieval (IR) tasks. For example, for scoring a document by combining the retrieval scores of its constituent segments, exploiting the proximity of query terms in documents for ad-hoc search, and for question answering (QA), where retrieved passages from multiple documents are aggregated and presented as a single document to a searcher. Feedback in ad hoc IR task is shown to benefit from the use of extracted sentences instead of terms from the pseudo relevant documents for query expansion. Retrieval effectiveness for patent prior art search task is enhanced by applying text segmentation to the patent queries. Another aspect of our work involves augmenting text segmentation techniques to produce segments which are more readable with less unresolved anaphora. This is particularly useful for QA and snippet generation tasks where the objective is to aggregate relevant and novel information from multiple documents satisfying user information need on one hand, and ensuring that the automatically generated content presented to the user is easily readable without reference to the original source document

    Improving Retrieval-Based Question Answering with Deep Inference Models

    Full text link
    Question answering is one of the most important and difficult applications at the border of information retrieval and natural language processing, especially when we talk about complex science questions which require some form of inference to determine the correct answer. In this paper, we present a two-step method that combines information retrieval techniques optimized for question answering with deep learning models for natural language inference in order to tackle the multi-choice question answering in the science domain. For each question-answer pair, we use standard retrieval-based models to find relevant candidate contexts and decompose the main problem into two different sub-problems. First, assign correctness scores for each candidate answer based on the context using retrieval models from Lucene. Second, we use deep learning architectures to compute if a candidate answer can be inferred from some well-chosen context consisting of sentences retrieved from the knowledge base. In the end, all these solvers are combined using a simple neural network to predict the correct answer. This proposed two-step model outperforms the best retrieval-based solver by over 3% in absolute accuracy.Comment: 8 pages, 2 figures, 8 tables, accepted at IJCNN 201

    Syn-QG: Syntactic and Shallow Semantic Rules for Question Generation

    Full text link
    Question Generation (QG) is fundamentally a simple syntactic transformation; however, many aspects of semantics influence what questions are good to form. We implement this observation by developing Syn-QG, a set of transparent syntactic rules leveraging universal dependencies, shallow semantic parsing, lexical resources, and custom rules which transform declarative sentences into question-answer pairs. We utilize PropBank argument descriptions and VerbNet state predicates to incorporate shallow semantic content, which helps generate questions of a descriptive nature and produce inferential and semantically richer questions than existing systems. In order to improve syntactic fluency and eliminate grammatically incorrect questions, we employ back-translation over the output of these syntactic rules. A set of crowd-sourced evaluations shows that our system can generate a larger number of highly grammatical and relevant questions than previous QG systems and that back-translation drastically improves grammaticality at a slight cost of generating irrelevant questions.Comment: Some of the results in the paper were incorrec
    • …
    corecore