6,994 research outputs found

    A survey on utilization of data mining approaches for dermatological (skin) diseases prediction

    Get PDF
    Due to recent technology advances, large volumes of medical data is obtained. These data contain valuable information. Therefore data mining techniques can be used to extract useful patterns. This paper is intended to introduce data mining and its various techniques and a survey of the available literature on medical data mining. We emphasize mainly on the application of data mining on skin diseases. A categorization has been provided based on the different data mining techniques. The utility of the various data mining methodologies is highlighted. Generally association mining is suitable for extracting rules. It has been used especially in cancer diagnosis. Classification is a robust method in medical mining. In this paper, we have summarized the different uses of classification in dermatology. It is one of the most important methods for diagnosis of erythemato-squamous diseases. There are different methods like Neural Networks, Genetic Algorithms and fuzzy classifiaction in this topic. Clustering is a useful method in medical images mining. The purpose of clustering techniques is to find a structure for the given data by finding similarities between data according to data characteristics. Clustering has some applications in dermatology. Besides introducing different mining methods, we have investigated some challenges which exist in mining skin data

    Bat Algorithm: Literature Review and Applications

    Full text link
    Bat algorithm (BA) is a bio-inspired algorithm developed by Yang in 2010 and BA has been found to be very efficient. As a result, the literature has expanded significantly in the last 3 years. This paper provides a timely review of the bat algorithm and its new variants. A wide range of diverse applications and case studies are also reviewed and summarized briefly here. Further research topics are also discussed.Comment: 10 page

    Satellite image segmentation using RVM and Fuzzy clustering

    Get PDF
    Image segmentation is common but still very challenging problem in the area of image processing but it has its application in many industries and medical field for example target tracking, object recognition and medical image processing. The task of image segmentation is to divide image into number of meaningful pieces on the basis of features of image such as color, texture. In this thesis some recently developed fuzzy clustering algorithms as well as supervised learning classifier Relevance Vector Machine has been used to get improved solution. First of all various fuzzy clustering algorithms such as FCM, DeFCM are used to produce different clustering solutions and then we improve each solution by again classifying remaining pixels of satellite image using Relevance Vector Machine (RVM classifier. Result of different supervised learning classifier such as Support Vector Machine (SVM), Relevance Vector Machine (RVM), K-nearest neighbors (KNN) has been compared on basis of error rate and time. One of the major drawback of any clustering algorithm is their input argument that is number of clusters in unlabelled data. In this thesis an attempt has been made to evaluate optimal number of clusters present in satellite image using DAVIES-BOULDIN Index

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging
    corecore