8,452 research outputs found

    Distorted Fingerprint Verification System

    Get PDF
    Fingerprint verification is one of the most reliable personal identification methods. Fingerprint matching is affected by non-linear distortion introduced in fingerprint impression during the image acquisition process. This non-linear deformation changes both the position and orientation of minutiae. The proposed system operates in three stages: alignment based fingerprint matching, fuzzy clustering and classifier framework. First, an enhanced input fingerprint image has been aligned with the template fingerprint image and matching score is computed. To improve the performance of the system, a fuzzy clustering based on distance and density has been used to cluster the feature set obtained from the fingerprint matcher. Finally a classifier framework has been developed and found that cost sensitive classifier produces better results. The system has been evaluated on fingerprint database and the experimental result shows that system produces a verification rate of 96%. This system plays an important role in forensic and civilian applications.Biometric, Fingerprints, Distortion, Fuzzy Clustering, Cost Sensitive Classifier

    Applied Sensor Fault Detection, Identification and Data Reconstruction

    Get PDF
    Sensor fault detection and identification (SFD/I) has attracted considerable attention in military applications, especially when safety- or mission-critical issues are of paramount importance. Here, two readily implementable approaches for SFD/I are proposed through hierarchical clustering and self-organizing map neural networks. The proposed methodologies are capable of detecting sensor faults from a large group of sensors measuring different physical quantities and achieve SFD/I in a single stage. Furthermore, it is possible to reconstruct the measurements expected from the faulted sensor and thereby facilitate improved unit availability. The efficacy of the proposed approaches is demonstrated through the use of measurements from experimental trials on a gas turbine. Ultimately, the underlying principles are readily transferable to other complex industrial and military systems

    Peptide mass fingerprinting using field-programmable gate arrays

    Get PDF
    The reconfigurable computing paradigm, which exploits the flexibility and versatility of field-programmable gate arrays (FPGAs), has emerged as a powerful solution for speeding up time-critical algorithms. This paper describes a reconfigurable computing solution for processing raw mass spectrometric data generated by MALDI-TOF instruments. The hardware-implemented algorithms for denoising, baseline correction, peak identification, and deisotoping, running on a Xilinx Virtex-2 FPGA at 180 MHz, generate a mass fingerprint that is over 100 times faster than an equivalent algorithm written in C, running on a Dual 3-GHz Xeon server. The results obtained using the FPGA implementation are virtually identical to those generated by a commercial software package MassLynx
    corecore