283 research outputs found

    Automatic Data Augmentation via Deep Reinforcement Learning for Effective Kidney Tumor Segmentation

    Full text link
    Conventional data augmentation realized by performing simple pre-processing operations (\eg, rotation, crop, \etc) has been validated for its advantage in enhancing the performance for medical image segmentation. However, the data generated by these conventional augmentation methods are random and sometimes harmful to the subsequent segmentation. In this paper, we developed a novel automatic learning-based data augmentation method for medical image segmentation which models the augmentation task as a trial-and-error procedure using deep reinforcement learning (DRL). In our method, we innovatively combine the data augmentation module and the subsequent segmentation module in an end-to-end training manner with a consistent loss. Specifically, the best sequential combination of different basic operations is automatically learned by directly maximizing the performance improvement (\ie, Dice ratio) on the available validation set. We extensively evaluated our method on CT kidney tumor segmentation which validated the promising results of our method.Comment: 5 pages, 3 figure

    Learning strategies for improving neural networks for image segmentation under class imbalance

    Get PDF
    This thesis aims to improve convolutional neural networks (CNNs) for image segmentation under class imbalance, which is referred to the problem of training dataset when the class distributions are unequal. We particularly focus on medical image segmentation because of its imbalanced nature and clinical importance. Based on our observations of model behaviour, we argue that CNNs cannot generalize well on imbalanced segmentation tasks, mainly because of two counterintuitive reasons. CNNs are prone to overfit the under-represented foreground classes as it would memorize the regions of interest (ROIs) in the training data because they are so rare. Besides, CNNs could underfit the heterogenous background classes as it is difficult to learn from the samples with diverse and complex characteristics. Those behaviours of CNNs are not limited to specific loss functions. To address those limitations, firstly we propose novel asymmetric variants of popular loss functions and regularization techniques, which are explicitly designed to increase the variance of foreground samples to counter overfitting under class imbalance. Secondly we propose context label learning (CoLab) to tackle background underfitting by automatically decomposing the background class into several subclasses. This is achieved by optimizing an auxiliary task generator to generate context labels such that the main network will produce good ROIs segmentation performance. Then we propose a meta-learning based automatic data augmentation framework which builds a balance of foreground and background samples to alleviate class imbalance. Specifically, we learn class-specific training-time data augmentation (TRA) and jointly optimize TRA and test-time data augmentation (TEA) effectively aligning training and test data distribution for better generalization. Finally, we explore how to estimate model performance under domain shifts when trained with imbalanced dataset. We propose class-specific variants of existing confidence-based model evaluation methods which adapts separate parameters per class, enabling class-wise calibration to reduce model bias towards the minority classes.Open Acces

    Improving Kidney Tumor Detection Accuracy Using Hybrid U-Net Segmentation

    Get PDF
    Kidney cancer stands as a significant factor in cancer-related mortality, highlighting the critical importance of early and precise tumor detection This study introduces a computer-aided approach using the KiTS19 dataset and a hybrid U-Net architecture. Manual tumor segmentation is resource-intensive and prone to errors. Leveraging the hybrid U-Net, known for its proficiency in medical image analysis, we achieve precise tumor identification. Our method involves initial kidney and tumor segmentation in high-resolution CT images, followed by region of interest (ROI) generation and benign/malignant tumor classification. The assessment conducted on the KiTS19 dataset demonstrates encouraging outcomes, with Dice coefficients of 0.974 for kidney segmentation and 0.818 for tumor segmentation, accompanied by a tumor classification accuracy rate of 94.3%.The hybrid U-Net’s advanced feature extraction and spatial context awareness contribute to these outcomes. By streamlining diagnosis, our approach has the potential to significantly improve patient outcomes. The use of the KiTS19 dataset ensures robustness across various clinical cases and imaging modalities. This method represents a valuable advancement in computer-aided kidney tumor detection, promising to enhance patient care

    Going Deep in Medical Image Analysis: Concepts, Methods, Challenges and Future Directions

    Full text link
    Medical Image Analysis is currently experiencing a paradigm shift due to Deep Learning. This technology has recently attracted so much interest of the Medical Imaging community that it led to a specialized conference in `Medical Imaging with Deep Learning' in the year 2018. This article surveys the recent developments in this direction, and provides a critical review of the related major aspects. We organize the reviewed literature according to the underlying Pattern Recognition tasks, and further sub-categorize it following a taxonomy based on human anatomy. This article does not assume prior knowledge of Deep Learning and makes a significant contribution in explaining the core Deep Learning concepts to the non-experts in the Medical community. Unique to this study is the Computer Vision/Machine Learning perspective taken on the advances of Deep Learning in Medical Imaging. This enables us to single out `lack of appropriately annotated large-scale datasets' as the core challenge (among other challenges) in this research direction. We draw on the insights from the sister research fields of Computer Vision, Pattern Recognition and Machine Learning etc.; where the techniques of dealing with such challenges have already matured, to provide promising directions for the Medical Imaging community to fully harness Deep Learning in the future

    Deep learning in medical imaging and radiation therapy

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146980/1/mp13264_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146980/2/mp13264.pd

    Joint Optimization of Class-Specific Training- and Test-Time Data Augmentation in Segmentation

    Full text link
    This paper presents an effective and general data augmentation framework for medical image segmentation. We adopt a computationally efficient and data-efficient gradient-based meta-learning scheme to explicitly align the distribution of training and validation data which is used as a proxy for unseen test data. We improve the current data augmentation strategies with two core designs. First, we learn class-specific training-time data augmentation (TRA) effectively increasing the heterogeneity within the training subsets and tackling the class imbalance common in segmentation. Second, we jointly optimize TRA and test-time data augmentation (TEA), which are closely connected as both aim to align the training and test data distribution but were so far considered separately in previous works. We demonstrate the effectiveness of our method on four medical image segmentation tasks across different scenarios with two state-of-the-art segmentation models, DeepMedic and nnU-Net. Extensive experimentation shows that the proposed data augmentation framework can significantly and consistently improve the segmentation performance when compared to existing solutions. Code is publicly available.Comment: Accepted by IEEE Transactions on Medical Imagin

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    From Manual to Automated Design of Biomedical Semantic Segmentation Methods

    Get PDF
    Digital imaging plays an increasingly important role in clinical practice. With the number of images that are routinely acquired on the rise, the number of experts devoted to analyzing them is by far not increasing as rapidly. This alarming disparity calls for automated image analysis methods to ease the burden on the experts and prevent a degradation of the quality of care. Semantic segmentation plays a central role in extracting clinically relevant information from images, either all by themselves or as part of more elaborate pipelines, and constitutes one of the most active fields of research in medical image analysis. Thereby, the diversity of datasets is mirrored by an equally diverse number of segmentation methods, each being optimized for the datasets they are addressing. The resulting diversity of methods does not come without downsides: The specialized nature of these segmentation methods causes a dataset dependency which makes them unable to be transferred to other segmentation problems. Not only does this result in issues with out-of-the-box applicability, but it also adversely affects future method development: Improvements over baselines that are demonstrated on one dataset rarely transfer to another, testifying a lack of reproducibility and causing a frustrating literature landscape in which it is difficult to discern veritable and long lasting methodological advances from noise. We study three different segmentation tasks in depth with the goal of understanding what makes a good segmentation model and which of the recently proposed methods are truly required to obtain competitive segmentation performance. To this end, we design state of the art segmentation models for brain tumor segmentation, cardiac substructure segmentation and kidney and kidney tumor segmentation. Each of our methods is evaluated in the context of international competitions, ensuring objective performance comparison with other methods. We obtained the third place in BraTS 2017, the second place in BraTS 2018, the first place in ACDC and the first place in the highly competitive KiTS challenge. Our analysis of the four segmentation methods reveals that competitive segmentation performance for all of these tasks can be achieved with a standard, but well-tuned U-Net architecture, which is surprising given the recent focus in the literature on finding better network architectures. Furthermore, we identify certain similarities between our segmentation pipelines and notice that their dissimilarities merely reflect well-structured adaptations in response to certain dataset properties. This leads to the hypothesis that we can identify a direct relation between the properties of a dataset and the design choices that lead to a good segmentation model for it. Based on this hypothesis we develop nnU-Net, the first method that breaks the dataset dependency of traditional segmentation methods. Traditional segmentation methods must be developed by experts, going through an iterative trial-and-error process until they have identified a good segmentation pipeline for a given dataset. This process ultimately results in a fixed pipeline configuration which may be incompatible with other datasets, requiring extensive re-optimization. In contrast, nnU-Net makes use of a generalizing method template that is dynamically and automatically adapted to each dataset it is applied to. This is achieved by condensing domain knowledge about the design of segmentation methods into inductive biases. Specifically, we identify certain pipeline hyperparameters that do not need to be adapted and for which a good default value can be set for all datasets (called blueprint parameters). They are complemented with a comprehensible set of heuristic rules, which explicitly encode how the segmentation pipeline and the network architecture that is used along with it must be adapted for each dataset (inferred parameters). Finally, a limited number of design choices is determined through empirical evaluation (empirical parameters). Following the analysis of our previously designed specialized pipelines, the basic network architecture type used is the standard U-Net, coining the name of our method: nnU-Net (”No New Net”). We apply nnU-Net to 19 diverse datasets originating from segmentation competitions in the biomedical domain. Despite being applied without manual intervention, nnU-Net sets a new state of the art in 29 out of the 49 different segmentation tasks encountered in these datasets. This is remarkable considering that nnU-Net competed against specialized manually tuned algorithms on each of them. nnU-Net is the first out-of-the-box tool that makes state of the art semantic segmentation methods accessible to non-experts. As a framework, it catalyzes future method development: new design concepts can be implemented into nnU-Net and leverage its dynamic nature to be evaluated across a wide variety of datasets without the need for manual re-tuning. In conclusion, the thesis presented here exposed critical weaknesses in the current way of segmentation method development. The dataset dependency of segmentation methods impedes scientific progress by confining researchers to a subset of datasets available in the domain, causing noisy evaluation and in turn a literature landscape in which results are difficult to reproduce and true methodological advances are difficult to discern. Additionally, non-experts were barred access to state of the art segmentation for their custom datasets because method development is a time consuming trial-and-error process that needs expertise to be done correctly. We propose to address this situation with nnU-Net, a segmentation method that automatically and dynamically adapts itself to arbitrary datasets, not only making out-of-the-box segmentation available for everyone but also enabling more robust decision making in the development of segmentation methods by enabling easy and convenient evaluation across multiple datasets
    • …
    corecore