25 research outputs found

    Interpolant-Based Transition Relation Approximation

    Full text link
    In predicate abstraction, exact image computation is problematic, requiring in the worst case an exponential number of calls to a decision procedure. For this reason, software model checkers typically use a weak approximation of the image. This can result in a failure to prove a property, even given an adequate set of predicates. We present an interpolant-based method for strengthening the abstract transition relation in case of such failures. This approach guarantees convergence given an adequate set of predicates, without requiring an exact image computation. We show empirically that the method converges more rapidly than an earlier method based on counterexample analysis.Comment: Conference Version at CAV 2005. 17 Pages, 9 Figure

    Verifying multi-threaded software using SMT-based context-bounded model checking

    No full text
    We describe and evaluate three approaches to model check multi-threaded software with shared variables and locks using bounded model checking based on Satisfiability Modulo Theories (SMT) and our modelling of the synchronization primitives of the Pthread library. In the lazy approach, we generate all possible interleavings and call the SMT solver on each of them individually, until we either find a bug, or have systematically explored all interleavings. In the schedule recording approach, we encode all possible interleavings into one single formula and then exploit the high speed of the SMT solvers. In the underapproximation and widening approach, we reduce the state space by abstracting the number of interleavings from the proofs of unsatisfiability generated by the SMT solvers. In all three approaches, we bound the number of context switches allowed among threads in order to reduce the number of interleavings explored. We implemented these approaches in ESBMC, our SMT-based bounded model checker for ANSI-C programs. Our experiments show that ESBMC can analyze larger problems and substantially reduce the verification time compared to state-of-the-art techniques that use iterative context-bounding algorithms or counter-example guided abstraction refinement

    Automatic Abstraction in SMT-Based Unbounded Software Model Checking

    Full text link
    Software model checkers based on under-approximations and SMT solvers are very successful at verifying safety (i.e. reachability) properties. They combine two key ideas -- (a) "concreteness": a counterexample in an under-approximation is a counterexample in the original program as well, and (b) "generalization": a proof of safety of an under-approximation, produced by an SMT solver, are generalizable to proofs of safety of the original program. In this paper, we present a combination of "automatic abstraction" with the under-approximation-driven framework. We explore two iterative approaches for obtaining and refining abstractions -- "proof based" and "counterexample based" -- and show how they can be combined into a unified algorithm. To the best of our knowledge, this is the first application of Proof-Based Abstraction, primarily used to verify hardware, to Software Verification. We have implemented a prototype of the framework using Z3, and evaluate it on many benchmarks from the Software Verification Competition. We show experimentally that our combination is quite effective on hard instances.Comment: Extended version of a paper in the proceedings of CAV 201

    Generating Schemata of Resolution Proofs

    Full text link
    Two distinct algorithms are presented to extract (schemata of) resolution proofs from closed tableaux for propositional schemata. The first one handles the most efficient version of the tableau calculus but generates very complex derivations (denoted by rather elaborate rewrite systems). The second one has the advantage that much simpler systems can be obtained, however the considered proof procedure is less efficient

    Subsumer-First: Steering Symbolic Reachability Analysis

    Full text link
    Abstract. Symbolic reachability analysis provides a basis for the veri-fication of software systems by offering algorithmic support for the ex-ploration of the program state space when searching for proofs or coun-terexamples. The choice of exploration strategy employed by the anal-ysis has direct impact on its success, whereas the ability to find short counterexamples quickly and—as a complementary task—to efficiently perform the exhaustive state space traversal are of utmost importance for the majority of verification efforts. Existing exploration strategies can optimize only one of these objectives which leads to a sub-optimal reach-ability analysis, e.g., breadth-first search may sacrifice the exploration ef-ficiency and chaotic iteration can miss minimal counterexamples. In this paper we present subsumer-first, a new approach for steering symbolic reachability analysis that targets both minimal counterexample discovery and efficiency of exhaustive exploration. Our approach leverages the re-sult of fixpoint checks performed during symbolic reachability analysis to bias the exploration strategy towards its objectives, and does not require any additional computation. We demonstrate how the subsumer-first ap-proach can be applied to improve efficiency of software verification tools based on predicate abstraction. Our experimental evaluation indicates the practical usefulness of the approach: we observe significant efficiency improvements (median value 40%) on difficult verification benchmarks from the transportation domain.

    SMT-based Model Checking for Recursive Programs

    Full text link
    We present an SMT-based symbolic model checking algorithm for safety verification of recursive programs. The algorithm is modular and analyzes procedures individually. Unlike other SMT-based approaches, it maintains both "over-" and "under-approximations" of procedure summaries. Under-approximations are used to analyze procedure calls without inlining. Over-approximations are used to block infeasible counterexamples and detect convergence to a proof. We show that for programs and properties over a decidable theory, the algorithm is guaranteed to find a counterexample, if one exists. However, efficiency depends on an oracle for quantifier elimination (QE). For Boolean Programs, the algorithm is a polynomial decision procedure, matching the worst-case bounds of the best BDD-based algorithms. For Linear Arithmetic (integers and rationals), we give an efficient instantiation of the algorithm by applying QE "lazily". We use existing interpolation techniques to over-approximate QE and introduce "Model Based Projection" to under-approximate QE. Empirical evaluation on SV-COMP benchmarks shows that our algorithm improves significantly on the state-of-the-art.Comment: originally published as part of the proceedings of CAV 2014; fixed typos, better wording at some place
    corecore