2 research outputs found

    Computer vision application for improved product traceability in the granite manufacturing industry

    Get PDF
    The traceability of granite blocks consists in identifying each block with a finite number of colour bands that represent a numerical code. This code has to be read several times throughout the manufacturing process, but its accuracy is subject to human errors, leading to cause faults in the traceability system. A computer vision system is presented to address this problem through colour detection and the decryption of the associated code. The system developed makes use of colour space transformations and various thresholds for the isolation of the colours. Computer vision methods are implemented, along with contour detection procedures for colour identification. Lastly, the analysis of geometrical features is used to decrypt the colour code captured. The proposed algorithm is trained on a set of 109 pictures taken in different environmental conditions and validated on a set of 21 images. The outcome shows promising results with an accuracy rate of 75.00% in the validation process. Therefore, the application presented can help employees reduce the number of mistakes in product tracking

    Automated Quality Control in Manufacturing Production Lines: A Robust Technique to Perform Product Quality Inspection

    Get PDF
    Quality control (QC) in manufacturing processes is critical to ensuring consumers receive products with proper functionality and reliability. Faulty products can lead to additional costs for the manufacturer and damage trust in a brand. A growing trend in QC is the use of machine vision (MV) systems because of their noncontact inspection, high repeatability, and efficiency. This thesis presents a robust MV system developed to perform comparative dimensional inspection on diversely shaped samples. Perimeter, area, rectangularity, and circularity are determined in the dimensional inspection algorithm for a base item and test items. A score determined with the four obtained parameter values provides the likeness between the base item and a test item. Additionally, a surface defect inspection is offered capable of identifying scratches, dents, and markings. The dimensional and surface inspections are used in a QC industrial case study. The case study examines the existing QC system for an electric motor manufacturer and proposes the developed QC system to increase product inspection count and efficiency while maintaining accuracy and reliability. Finally, the QC system is integrated in a simulated product inspection line consisting of a robotic arm and conveyor belts. The simulated product inspection line could identify the correct defect in all tested items and demonstrated the system’s automation capabilities
    corecore