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ABSTRACT 

Reyna, Mark A., Automated Quality Control in Manufacturing Production Lines: A Robust 

Technique to Perform Product Quality Inspection. Master of Science in Engineering 

(MSE), May, 2021, 84 pp., 15 tables, 28 figures, references, 45 titles. 

Quality control (QC) in manufacturing processes is critical to ensuring consumers 

receive products with proper functionality and reliability. Faulty products can lead to additional 

costs for the manufacturer and damage trust in a brand. A growing trend in QC is the use of 

machine vision (MV) systems because of their noncontact inspection, high repeatability, and 

efficiency. This thesis presents a robust MV system developed to perform comparative 

dimensional inspection on diversely shaped samples. Perimeter, area, rectangularity, and 

circularity are determined in the dimensional inspection algorithm for a base item and test items. 

A score determined with the four obtained parameter values provides the likeness between the 

base item and a test item. Additionally, a surface defect inspection is offered capable of 

identifying scratches, dents, and markings. The dimensional and surface inspections are used in a 

QC industrial case study. The case study examines the existing QC system for an electric motor 

manufacturer and proposes the developed QC system to increase product inspection count and 

efficiency while maintaining accuracy and reliability. Finally, the QC system is integrated in a 

simulated product inspection line consisting of a robotic arm and conveyor belts. The simulated 

product inspection line could identify the correct defect in all tested items and demonstrated the 

system’s automation capabilities. 





  

iv 

 

DEDICATION 

 

 I am so grateful for the family and friends that supported me in completing this thesis and 

my graduate degree in electrical engineering. The care, motivation, and assistance my mother, 

Mary Reyna, and father, Tony Reyna, gave made it possible to chase my passion in engineering. 

My sister, Tanya Reyna, and brother, Daniel Reyna, helped me stay relaxed and smiling through 

the hardest times of 2020. My incredible cousins and friends were always there to talk, laugh, 

and dream with. To all these people in my life, thank you and I love you all. I look forward to 

what the future holds with you all in it. 

 



 
 

  



  

v 

 

ACKNOWLEDGMENTS 

 

 I am thankful to Dr. Satya Aditya Akundi, my thesis advisor, for all the resources and 

advice he shared. By allowing me to work at the Complex Engineering Systems Laboratory, 

pushing me to take on challenges I considered beyond my ability, and always being patient and 

welcoming with me, Dr. Akundi made it possible to complete this thesis and grow as an 

engineer. Thank you to my thesis committee members: Dr. Jia Chen, Dr. Mostafizur Rahman, 

and Dr. Yong Zhou. 

 I greatly appreciate Regal Beloit for providing a tour of their McAllen, Texas facility, 

demonstrating their equipment and processes, and providing samples and information on the 

discs built there. 

  



 
 

  



vi 

TABLE OF CONTENTS 

Page 

ABSTRACT ………………………………………………………………………………….…..iii 

DEDICATION …………………………………………………………………………………...iv 

ACKNOWLEDGEMENTS …………………………………………………………………….... v 

TABLE OF CONTENTS ………………………………………………………………………...vi 

LIST OF TABLES ……………………………………………………………………………...viii 

LIST OF FIGURES ……………………………………………………………………………...ix 

CHAPTER I. INTRODUCTION ………………………………………………………………… 1 

CHAPTER II. LITERATURE SURVEY……………………………………………………….... 5 

2.1- State of Research on Free-Form Product Inspection …..………….………………....5 

2.2- State of Research on Product Dimensional Analysis……………………….……… 13 

2.3- State of Research on Product Surface Analysis…………………………………..... 18 

2.4- Literature Discussion……….……………………………………………………….25 

CHAPTER III. PROPOSED MACHINE VISION SYSTEM………………….……………….. 33 

CHAPTER IV. PRODUCT INSPECTION BASED ON DIMENSIONAL ANALYSIS………. 35 

4.1- Initial Test Results and Discussion………………………………………………… 38 

CHAPTER V. PRODUCT INSPECTION BASED ON SURFACE ANALYSIS……………… 43 

5.1- Hardware and Algorithm……….…………………………………………………... 43 

5.2- Test Results………………………………….………………………………………48 

CHAPTER VI. INDUSTRY CASE STUDY…………………………………………………… 57 



6.1- Industry Part Inspections…………………………………………………………… 58 

6.2- A Simulated Inspection Line….…………………………………………................. 64 

CHAPTER VII. CONCLUSION.………………………………………………………………. 68 

7.1- Conclusion….………………………………………………………………………. 68 

7.2- Future Work….……………………………………………………………………... 69 

REFERENCES …………………………………………………………………………………. 71 

APPENDIX……………………………………………………………………………………… 77 

BIOGRAPHICAL SKETCH……………………………………………………………………. 84

vii



viii 

LIST OF TABLES 

Page 

Table 1: Categorization of Product Quality Inspection Techniques Across Various 

Application Domains………………………………………………………………….. 25 

Table 2: Cube Test Comparison………………………………………………………………… 39 

Table 3: Test Case Data…………………………………………………………………………. 40 

Table 4: Cylinder Test Comparison……………………………………………………………... 40 

Table 5: Sinusoid Test Comparison……………………………………………………………... 40 

Table 6: Complex Part Test Comparison……………………………………………………….. 41 

Table 7: Cube Test with Minor Dimensional Changes………………………………………….. 42 

Table 8: Summary on Surface Analysis Pore Classification……………………………………. 45 

Table 9: Test Results on Wafers with No Defects………………………………………………. 48 

Table 10: Test Results on Wafers with Manually Created Defects……………………………... 50 

Table 11: System Lower Limitation…………………………………………………………….. 54 

Table 12: Industry Disc Dimensional Analysis Statistics……………………………………….. 60 

Table 13: Measurements of 3D Printed Discs…………………………………………………... 61 

Table 14: Industry Discs Surface Results……………………………………………………….. 63 

Table 15: Production Line Inspection Test Results……………………………………………... 66 



 
 

  



ix 

LIST OF FIGURES 

Page 

Figure 1: Growing Wear of Micro Tool (Source: Dai and Zhu [3])……………………………… 7 

Figure 2: MV System for Kiwi Identification (Source: Williams et al. [23])……………………. 9 

Figure 3: Fish Feeding Intensity (Source: Zhou et al. [25])…………………………………….. 10 

Figure 4: Examples of Detecting Different Extrusion Conditions Through Developed 

Vision System (Source: Kazemian et al. [36])………………………………….……. 17 

Figure 5: Defect Types a) Small Foreign Matter, b) Large Foreign Matter, c) 

Contamination (Source: Wang et al. [42])………...…………………………………..19 

Figure 6: Four Images Acquired Using Different Lighting Sources, an Albedo Image, 

and a 3D Reconstruction (Source: Smith et al. [45])………………………………….23 

Figure 7: Machine Vision Setup Used…………………………………………………………... 33 

Figure 8: Proposed Machine Vision Algorithm for Product Dimensional Analysis……………. 38 

Figure 9: Shapes Used for Testing………………………………………………………………. 39 

Figure 10: (a) Original Complex Part; (b) Complex Part Shrunken to 95%................................. 41 

Figure 11: (a) Dimensional Analysis 3 cm Cube; (b) Dimensional Analysis 3.1 cm 

Cube………………………………………………………………………………..... 42 

Figure 12: Defective Item a) Unprocessed Image, b) Predicted Surface, c) Surface 

with Defects…………………………………………………………………………. 47 

Figure 13: Output Images for Wafer with No Defects (Trials 1-3)……………………………... 49 

Figure 14: Trial 4- Box Cuts (Predicted and Tested)……………………………………………. 51 



x 

Figure 15: Trial 7- Wafer with 0.5 mm Bump (Predicted and Tested)…………………………..51 

Figure 16: Trial 10- Wafer with 1 mm Bump (Predicted and Tested)…………………………...51 

Figure 17: Trial 13- Wafer with Marker Dots (Predicted and Tested)………………………….. 52 

Figure 18: Trial 16- Wafer with Screw Dents (Predicted and Tested)………………………….. 52 

Figure 19: Trial 19- Wafer with Long Scratch (Predicted and Tested)…………………………. 52 

Figure 20: Wafer with Large Marker Blob (Predicted and Tested)……………………………... 53 

Figure 21: Trial 26- Wafer with Varying Dent Depths…………………………………………..54 

Figure 22: Trail 28- Wafer with Varying Hole Diameters……………………………………… 55 

Figure 23: Metal Industry Disc………………………………………………………………….. 58 

Figure 24: (left) Larger Outer Diameter 5%, (right) Smaller Inner Diameter 5%………………. 59 

Figure 25: Industry Disc Surface Dents…………………………………………………………. 63 

Figure 26: Industry Disc Surface Scratches……………………………………………………... 64 

Figure 27: Industry Disc Surface Marks………………………………………………………… 64 

Figure 28: Production Line Inspection Scenario………………………………………………... 65



1 
 

CHAPTER I 

 

INTRODUCTION 

 

In manufacturing, product quality refers to how a set of measured features of a product 

compare to a desired set of features. Some common quality features are dimensions, surface 

texture, coloration, ultimate strength, and mass. A few examples of product quality deviation are 

screws produced too thin, metal surfaces over-grinded, and poor automobile paintjobs. The 

difficulty in maintaining quality in manufacturing rises as product designs increase in complexity 

and an increase in yield. Part of the reason for this comes from an increased probability of 

machining errors, as well as possibly insufficient resources for quality inspection. For 

manufacturers to fulfill growing market demands and achieve acceptable quality levels, 

improvements in quality control (QC) are needed. 

Quality control is defined by the American Society of Quality as “a part of quality 

management focused on fulfilling quality requirements” [1]. In other words, QC is the effort to 

maintain a level of quality across the production or use of an item. The standard to which a 

product is compared generally comes from a similar product, that is deemed to be ideal or in a 

satisfactory state. If a product’s quality attributes deviate from the standard, then it could result 

in being aesthetically unpleasing, having a reduced period of product usability, and/or failure to 

function properly, such as in the examples of quality deviations provided earlier. In the case of 
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just an aesthetic quality deviation, such as coloring or surface finish [2], the product may not 

appeal to potential customers leading to reduced sales or additional costs to improve appearance. 

Whereas in the case of functional failure, such as in automobile brakes, drastic consequences 

could result involving the loss or harm of human lives and expensive recalls. Therefore, QC is 

critical to any manufacturing process. 

Since the start of mass production, the techniques used for QC have always depended on 

humans to some degree. Early QC techniques used human vision inspection as well as basic 

measuring tools handled by humans. Advancements to these early techniques led to 

improvements in existing tools accuracy and efficiency, examining new features, and developing 

methods for automating these measurements. Technological advancements then allowed for 

accurate and precise sensors to be integrated in factories for measurements, which automated 

tasks performed by quality inspectors. These sensors provide rich data with which can be 

analyzed for deeper insight on the performance of systems and tasks. Data analysis generally 

involves the use of machine learning (ML). The use of ML is ushering advanced manufacturing 

inspection techniques, and in remarkably automated and efficient ways. Lastly, an up-and-

coming QC technique is machine vision (MV), which will directly challenge human vision 

inspection. Seeing the world, or production line, through camera lenses and programming 

systems to act appropriately on what is in view is the aim of MV. 

Machine vision (MV) makes use of computer vision (CV), which has grown popular in 

recent years due to its increased use in notable applications such as self-driving vehicles [11], 

security systems [12], and drones [13]. MV uses CV to emulate the human vision system to gain 

information to be acted on. MV uses image processing techniques to identify or measure items in 

images to then be acted on. A MV system is comprised of at least a camera and a processor for 
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image processing and analysis. Some MV systems will include light sources, turntables, and 

robots to improve the inspection accuracy or viewing area. The potential of MV being used in 

QC systems has induced a wealth of research into the types of product defects detectable. Many 

MV systems are using QC features mentioned earlier, such as dimensions, color, and texture, to 

analyze products.  The significance of MV as a form of QC inspection is their ability to perform 

repetitive tasks accurately and consistently for extended periods of time. Unlike humans, a QC 

system using MV will not tire out, can work at an efficiency unparalleled, and make fewer 

errors. Additionally, the efficiency at which MV performs is greatly enhancing the scale of 

products to be inspected. The success MV has had is increasing the scope, accuracy, and 

repeatability of QC for Industry 4.0 [15]. 

Although QC systems appears to be promising for the future, the current state of this 

technology is not universally on par with what is needed for absolute reliance on it. Progress 

continues to be made on sometimes low or volatile accuracy and precision. Researchers have 

made headway by developing novel algorithms or advancing existing algorithms to be more 

robust. Particularly, researchers are working on improving how these systems handle 

uncontrollable environmental conditions. Issues on lighting, background, and positioning of 

products for QC systems are largely considered in recent literature [16]. Additionally, the limits 

of current technology restrict the work developed, as accuracy suffers to reduce processing time 

[17]. Improvements in technology could result in shortened processing times and gained 

accuracy in the systems. Finally, fully automated QC systems are limited [18]. The need for 

some human intervention or validation in these systems is yet to be overcome. 

This thesis presents a QC system developed to contribute to the body of knowledge 

addressing shortcoming of the technology. The proposed QC system can perform dimensional 
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and surface analysis in a production line; two common analyses MV systems are used for. Three 

notable features of the QC system are its ability to operate at high levels of automation, inspect 

complex shapes and figures, and adapt its inspection capabilities to new product types. To 

perform automated product inspection, the proposed QC system can make use of a robotic arm 

and conveyor belt which will allow for a stream of inspectable products to pass within its view. 

Once a decision on product quality has been made, the robotic arm can sort acceptable and 

defective items. More information on the system’s automation capabilities is provided in Chapter 

4, and experimental trials with a robotic arm and conveyor belt are demonstrated in Chapter 6. 

By using blob analysis, the QC system can trace complex shapes for data such as perimeter and 

area. The data collected is passed to an algorithm developed to assess the likeness between a 

base and test product. More information on this is shared in Chapter 4. Finally, the QC system is 

lightweight and can perform inspections by simply using a base item or manually inputted 

values. The QC system can perform accurate inspections at the millimeter scale making it 

suitable for use in many industrial applications. Chapter 6 provides a case study using the QC 

system on industrial metal discs used within electric motors. 

The remainder of this thesis is structured as follows. Chapter 2 presents a literature survey on 

state-of-the-art QC systems developed for free-form analysis, dimensional analysis, and surface 

analysis. Chapter 3 introduces in detail the setup for the proposed QC system. Chapters 4 and 5 

examine how the QC system performs dimensional and surface analysis, respectively. Chapter 6 

provides an industry case study on the QC system for disc in electric motors. Additionally, the 

QC system is integrated in a simulated production line to demonstrate its automation capabilities. 

Chapter 7 concludes the research by discussing the abilities of the proposed QC system and 

future work. 
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CHAPTER II 

 

LITERATURE SURVEY 

 

The following is a literature survey covering state-of-the-art QC systems using MV for 

free-form analysis, dimensional analysis, and surface analysis for QC (a MV system in this 

chapter will refer to a QC system using MV). The research presented covers a wide range of 

applications in sectors such as manufacturing, agriculture, and construction.* 

 

2.1- State of Research on Free-Form Product Inspection 

Advancements in research on MV systems is leading to the prevalence of free-form 

object detection. Free-form objects have challenged researchers to address the need of advanced 

mathematical and statistical tools to be applied for inspection of complex shapes for products in 

manufacturing. Further, MV systems capable of performing free-form object detection are best 

suited to adapt to the continuously changing demands in manufacturing.  

MV systems are capable of accurately detecting differences between 2D objects. 

Provided a baseline object and other objects to test against, MV systems can identify 

discrepancies between objects. This is an advantageous to manufacturers producing flat objects 

who can use this technology to rapidly identify defects and have them removed. An example of 

this technology was developed by Pacella et al. [19], who use a MV system to compare the 

profile of test objects with the profile of a baseline model. The difference in area between the 

https://www.sciencedirect.com/science/article/pii/S0360835217301870
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baseline and test objects is calculated and reported. The researchers of this system 

developed two approaches for determining the discrepancies: a single-segment approach and a 

multiple-segment approach. The single-segment approach uses a univariate synthetic measure 

and a univariate control chart for product differences. The multiple-segment approach uses a 

vector of discrepancy and multivariate control chart to measure and monitor product differences. 

Additionally, the two approaches can be used to identify shifting, scaling, and bending 

deformations and the extent of these deformations. The researchers demonstrated that the 

multiple-segment approach outperformed the single-segment approach in a case study on cut 

leather hides, due to its level of sensitivity.  

It is essential that production tools be maintained to ensure output is at a desirable 

quality. In computer numerical controlled (CNC) machines that perform subtractive 

manufacturing by milling, the tools used for cutting and drilling degrade over time. MV systems 

offer a high-speed method for tool inspection allowing alerts to be made when tool replacement 

is necessary. Dai and Zhu [3] produced an automated MV system capable of inspecting micro 

CNC machine tools with the tool remaining in the machine, which further reduces machine 

downtime. It uses an algorithm that searches for bright pixels on the tool (indicative of wearing) 

then converts from pixels to millimeters (1.38 mm/pixel) to output the worn area. Figure 1 shows 

five images from the MV system of a progressively damaged tool at different time points. The 

researchers tested how their system performed under 12 varying CNC machine settings, such as 

varied spindle speed and radial engagement. The systems results found that a high level of 

precision can be achieved and how varying system’s settings can extend a tool’s life. Similarly, 

Chethan et al. [20] designed a MV system to observe and quantify the tool wear area on Nimonic 

75-- a nickel-base super alloy. An acoustic emission (AE) sensor is used in addition to the MV 

https://www.sciencedirect.com/user/identity/landing?code=o0fNJhz_qRJnJFmCbbzW9-vyHe4vtv_eOVNfP3hl&state=retryCounter%3D0%26csrfToken%3D784c3c25-5d72-47e8-bad0-6fd77df3a217%26idpPolicy%3Durn%253Acom%253Aelsevier%253Aidp%253Apolicy%253Aproduct%253Ainst_assoc%26returnUrl%3D%252Fscience%252Farticle%252Fpii%252FS0141635917302817%253Fcasa_token%253Do_BPI71k8OAAAAAA%253AZDGpr3UrUQKzmsJzxho7iwyDoQ3fXc2ejMccEZd7jX7g2nsiGKYVRoGHAxlFZ37H0en38-zDn4E%26uuid%3D27f1a591-d6dc-4015-8c65-3908bc7ff7c6%26prompt%3Dlogin%26cid%3Darp-799fb6be-ca38-4ca8-9552-ab4d33336471
https://www.sciencedirect.com/science/article/pii/S0263224119304610
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system for QC. The goal of the work is to optimize machining parameters using feedback from 

the MV signals and the AE sensor, along with the Taguchi technique, to reduce a tool’s wear 

area. The MV system uses blob analysis outputting the wear area in pixels. An experiment 

conducted by the researchers found that optimizing the parameters using the two sensors in the 

QC system reduced the wear area by nearly 8.5%. Using the results, the researchers could 

precisely identify how changes in parameters, such as the tool’s RPM and cutting depth, would 

affect wear area. 

 

 

Figure 1: Growing Wear of Micro Tool (Source: Dai and Zhu [3]) 

Recycling is laborious process that is generally backed up. A major bottleneck in the 

process is accurately sorting the material inflow to avoid contamination later in the process. MV 

systems are used to some degree in many large recycling centers to improve the sorting 

efficiency. Research related to using MV systems for recycling aims to improve the accuracy 

which material is sorted, the range of material types, and innovative ways to make MV systems 

less expensive and more accessible. Wang et al. [21] propose a MV systems capable of sorting 

non-ferrous metals from end-of-life vehicles (ELV). The system can be used to categorize metal 

scraps of varying forms as either aluminum or copper. Four shapes are considered in the analysis 

of aluminum: rod, square, triangle, and round. Once some initial separating occurs, color and 

texture features are extracted from the materials. These features are used with principal 

component analysis (PCA) and support vector machine (SVM) to classify the metals at an 

https://www.sciencedirect.com/science/article/pii/S0956053X19305690
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accuracy of 96.64%. Additionally, the system parameters were optimized for sorting the metal 

scraps at a sufficient accuracy and classification rate. The researchers performed an actual 

production test using their system and 170 kg of non-ferrous metal. The results of the case study 

showed the system could sort materials at an accuracy above 88.8% and a separation purity of 

89.85%. 

MV systems are growing in popularity for agricultural produce quality inspection. The 

tedious inspection process farmers and producers must undergo each season is shifting to MV 

systems, that can perform consistent and accurate inspections for longer periods of time. Su et al. 

[22] provide research on 3D quality inspection of produce, specifically potatoes, using MV 

systems. Performing inspections in 3D has allowed MV systems to determine potato volume and 

better identify appearance defects when compared to 2D. In this study, the system calculates the 

length, width, depth, fit ellipse, and surface area for each potato using three images. Using the 

acquired dimensional information, a linear regression model was created for predicting the mass 

of a potato. Once mass is estimated, the produce is classified into three categories: small, 

medium, and large. After sorting, the same images are passed through a series of detection 

algorithms for identifying: bumps, hollow areas, and/or bends in the potatoes. The MV system 

reached a 90% accuracy level for mass prediction and an 88% accuracy for defect categorization. 

Additionally, the work developed allowed for a virtual 3D reconstruction of the potatoes 

considered. This allows for the use of virtual reality (VR) as a method of remote quality 

inspection by humans. The MV system demonstrates how QC on agricultural produce can be 

performed in 3D and how mass, an unmeasurable property with cameras, can be reliably 

predicted using it. 

https://www.sciencedirect.com/science/article/pii/S016816991830067X
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Continuing on the agricultural applications of MV systems, Williams et al. [23]  designed 

and tested a robotic kiwi harvesting system for commercial application due to the decreased a 

labor force in New Zealand. The system consists of five subsystems: MV for object detection, 

stereo depth location, a dynamic harvesting scheduler, arm path-planning and servo control, and 

fruit grip-and-depth. The first two subsystems mentioned are considered here. Successfully 

harvesting kiwis requires accurately detecting them. To find kiwis in an image, the researchers 

use a Fully-Convolution Network (FNC) for semantic segmentation. The FNC uses 48 images 

for training and 15 for validation. Once kiwis are identified in an image, the researchers used 

stereo image analysis to determine if the fruits are in a reachable range of the robotic arms, an 

example of this is shown in Figure 2. Fruits capable of being picked by the robotics arms are 

ordered by lowest hanging. Experimental results from the vision system show that 89.6% of 

pickable kiwis were correctly identified and that 76.0% of all fruit in the cameras field of view 

were detected. A cycle time of 5.5 s/fruit was reported, and a majority of that was attributed to 

the vision system. 

 

 

Figure 2: MV System for Kiwi Identification (Source: Williams et al. [23]) 

https://www.sciencedirect.com/science/article/pii/S153751101830638X
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Aquaculture, the cultivation of fish under controlled conditions, can improve tracking 

fish appetite which requires manual labor and involves subjectivity. Zhou et al. [24] offer a 

solution that uses a MV system to observe the fish feeding intensity, as shown in Figure 3. The 

system uses a near-infrared light source and camera for image acquisition. The researchers 

performed a rotation, scale, and translation technique on the fish feeding images, as well as a 

noise-invariant data expansion. The fish appetites were judged using a Convolution Neural 

Network trained on 8,800 images. The CNN achieved an accuracy of 90% and classified the 

feeding intensity better for “none” and “strong.” A CNN was proven to outperform other 

classification methods in accuracy, such as support vector machine (73.75%) and back 

propagation neural network (81.25%). Additionally, CNN was preferred due to feature extraction 

occurring directly in the methods and better generality.  

 

 

Figure 3: Fish Feeding Intensity (Source: Zhou et al. [25]) 

Similarly, harvesting fish is developing into an optimized and efficient, automated 

process. A MV system developed by Azarmdel et al. [25] is capable of gutting and cutting trout 

fish. The MV system developed determines the optimal cutting points for head removal and gut 

extraction. The series of procedures done to accomplish this does not rely on common machine 

learning methods, instead all image processing relied on tracing, coloring, and patterns on the 

fish. Essential to accurately determining the desired points of a fish was finding the four fins on 

its lower half. To do this the researchers first had to define a line through the upper and lower 

https://www.sciencedirect.com/science/article/pii/S0044848618317745
https://www.sciencedirect.com/science/article/pii/S0168169919300766
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half of a fish to divide the back and belly. A second line was then created on the lower half that 

allowed for easier identification of the fins using coloring techniques. Successfully segmenting 

the four fins required various combinations of cropping and thresholding through the entire 

procedure. The results of the system showed that fin identification could achieve a sensitivity, 

specificity, and accuracy of 86.054%, 99.965%, 99.874%, respectively. Accurately locating the 

fins provides improved head and belly mapping when compared to just determining the length 

and width of any fish, therefore optimizing the trout processing system. 

Identifying fatigue crack initiation sites (FCIS) on metallic compounds is a task typically 

reserved for experts. However, Wang et al. [26] have created an automated system using MV for 

inspection of FCIS. To accomplish this Deeply Supervised Object Detector (DSOD) was created 

using Single Shot MultiBox Detector (SSD) combined with the DenseNet algorithm. 

Unfortunately, largely due to no datasets and minimal images on FCIS publicly available, the 

performance of the developed system could not reach a state in which the researchers believe it is 

ready to be used for practical applications. The results obtained showed that 38.5% of the 

bounding boxes outputted were totally invalid, yet 26.7% could excellently find an FCIS in an 

image. Nevertheless, the work contributed begins the investigation on how to automatically 

target FCIS. 

Advancements in QC for e-jet printing systems were made by Lies et al.[27]  who created 

a microlevel MV system. The system proposed performs in-situ inspection and is designed to be 

a step in a full closed-loop control system. Developing a system for small scale inspection 

required considerable effort to acquire high resolution images, and factors such as how the 

angular field of view was affected by the working distance were necessary to calculate. After 

image acquisition, all images were converted to greyscale and then binarized. Blob analysis was 

https://www.sciencedirect.com/science/article/pii/S0927025619305580
https://www.sciencedirect.com/science/article/pii/S2351978918306747
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used to obtain a scale of micrometers to pixels based on the known nozzle size. Using a created 

region of interest (ROI) on the images, morphological operations could be performed that 

improved determining the filament diameter. Finally, a 3D rendering was developed to imitate 

printed patterns and for analysis. The proposed system succeeded at detecting dimensional 

changes and handling multilayer inspection at the microlevel. The researchers identify the future 

direction of continuing to shrink the scale of the system to nanometer inspection. 

A growing trend in home construction is pre-fabricating large home sections. The 

efficiencies of mass production allow for prefabricated sections to be quickly and cheaply 

produced. Martinez et al. [28] designed a MV system for manufacturing prefabricated home 

sections to ensure quality is maintained in the production of steel frames. Inspection is done on 

the studs of steel frames for mistakes such as improper squaring or positioning. A variety of steel 

frames appear in the construction process considered so the researchers developed a robust 

system capable of handling a range of frame complexities. To ensure correct frames were being 

produced, the model analyzed by the MV system was compared to the frame assembly model 

with an allowed tolerance. The system follows four modules: frame inspection algorithm, 

functional features extraction, inputs validation, and decision-making module (DMM). The 

frame inspection algorithm uses an adapted Hough transform for line detection, intersection 

detection, and stud detection. In the inputs validation module, studs detected are matched to the 

Building Information Module (BIM) and labelled. The DMM outputted either a warning that 

misplacements occurred but were within the tolerance or an error that misplacements occurred 

and need relocation or replacement. In three case-studies, one real and two virtual, the proposed 

system correctly performed stud detection and operation points estimation. Finally, the system 

https://www.sciencedirect.com/science/article/pii/S0926580518306332
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proposed is reported to delay the manufacturing process by 1.5-2% but could avoid greater 

delays of 35-55% caused by errors. 

 

In summary, the identified case studies demonstrate the ability of MV systems to analyze 

products of complex forms and provide objective analyses on them. MV systems capable of free-

form analysis expand the design options available to manufacturers by providing a platform and 

advances to efficiently inspect complex products and their geometries. Additionally, products 

that are by nature free-form and have been time consuming to inspect can be rapidly inspected 

through these MV systems. 

 

2.2- State of Research on Product Dimensional Analysis 

One of the most common uses for MV systems is in gaining dimensional information on 

a considered product. In QC, it’s important to ensure that a product stays within a size tolerance. 

To verify production specifications are being satisfied, manufacturers are placing greater 

confidence in MV systems to perform accurate and efficient dimensional measurements. Recent 

literature on dimensional analysis for MV systems is demonstrating the range and complexity of 

problems being solved with it. Progress on program efficiency, scale of inspection, and 

environmental factors are just some of the issue’s researchers are providing creative solutions 

for. 

Gears are a commonly manufactured item that could benefit from increased accuracy and 

precision in inspection. Moru and Borro [29] improved QC for gear inspection by developing a 

MV system that assesses whether a produced gear exceeds a specified size tolerance, and then 

has a robot to automatically act on a decision made by the system. Using a telecentric camera 

https://link.springer.com/article/10.1007/s00170-019-04426-2
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lens and high-performance equipment, subpixel level measurements of the gears were captured. 

Specifically, the outer diameter, inner diameter, and number of teeth were computed using a 

unique algorithm for each measurement. The determined measurements were then provided to an 

application developed by the researchers for comparison with an acceptable gear. 

Experimentation of the system was conducted on 12 gears with the system correctly rejecting 4 

gears that did not meet the 0.02mm threshold specified. The system developed also considers 

measurement uncertainty when classifying and works with a significantly lower tolerance due to 

potential system errors. 

As previously mentioned, a popular industrial application for MV systems is inspecting 

quality and safety of food. Devi et al. [30] contrived a MV system for inspection of rice grain 

sizes and quality. The system uses Canny Edge Detection to obtain the contour of each rice grain 

in an image, and then develops a region of interest (ROI) around the grain for classification. 

From the ROI, various properties such as length and breadth can be determined for each grain. In 

the results of an experiment, the system achieved over 90% classification accuracy. A deeper 

investigation on QC for rice grains was conducted by Chen et al. [31] The researchers considered 

only red indica rice, and developed a system that identified kernels that were broken, chalky, and 

damaged or spotted. Image acquisition was performed using a charge-coupled device (CCD) and 

a near infrared backlight. Each of the three types of defects previously mentioned required a 

unique algorithm. The broken kernels identification algorithm classified using a support vector 

machine (SVM) based on the length of each kernel. The chalky algorithm used the varying 

infrared light penetration through the kernels with another SVM to identify the chalky areas. The 

damaged and spotted areas algorithm performed edge detection using the Sobel gradient operator 

and Otsu segmentation to remove kernel contours. This allowed for inner defects to show and be 

https://ieeexplore.ieee.org/abstract/document/8391871?casa_token=cGGjhaXUpO0AAAAA:5u0_EYTJJY5jo-dZAXH-Ws8BQy9Umezkp03QQyDC4C_lhddJchjEeC-F0fvejAPuBlOEpNatYw
https://www.sciencedirect.com/science/article/pii/S0733521019300840
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reported. Ultimately, the proposed system achieved accuracies of 99.3%, 96.3%, and 93.6% for 

the broken, chalky, and damaged or spotted algorithms, respectively. Additionally, the system 

had an average run time of 0.15 seconds making it efficient for colored rice inspection.  

 

For carrot grading, Xie et al. [32] use a MV system to investigate 12 attributes of 

carrots—six on dimensions and six on color. The attributes determined are used as inputs in three 

ML algorithms which are compared for accuracy and speed in grading carrots. To determine the 

shape features, the system first performs pre-processing on the acquired images. Area, perimeter, 

and aspect ratio can be solved for prior to developing a tight ROI around the carrot to identify the 

length and maximum diameter. A carrot’s average diameter is calculated by averaging the 

distance every 50 pixels of the carrot. Accuracy differences for back propagation neural network 

(BPNN), support vector machine (SVM), and extreme learning machine (ELM) were 93.33%, 

91.67%, and 96.67%, respectively. In addition to reaching the greatest accuracy, ELM was 

praised for its processing time and generalization abilities.  

Devi et al. [30], Chen et al. [31], and Xie et al. [32] demonstrate the progress being made 

in QC with application toward accurate dimensional detection of small objects with a potential 

application and reliance in manufacturing processes such as sorting, machining and quality 

management. 

Improvements in the accuracy of glass bottle breakage and contamination detection were 

made by Huang et al. [33] The improvements come without sacrificing the number of bottles 

inspected. The MV system used for the inspection process involves multiple observation points 

which check the bottles mouth, bottom, and walls. Tracking a bottle’s mouth is performed by 

using a radial scanning method followed by contour fitting. Next, feature extraction is done and, 

https://www.sciencedirect.com/science/article/pii/S2405896319323948
https://www.sciencedirect.com/science/article/pii/S2215098617310194
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finally, defect recognition capable of identifying multiple defects and providing dimensional 

information on the defect(s). To track a bottle’s bottom, edge detection and bottom positioning 

are used. Fourier transform and inverse transform are used for texture smoothing of the images, 

and a blob algorithm is used to detect the specific defects on the bottom of the bottle. Examples 

of bottom defects capable of being detected are hairs and blunt areas. The MV system developed 

is also able to inspect the walls of an entire bottle for abnormal qualities and stains. Notably, the 

system maintains an inspection rate of 72,000 bottles per hour while achieving a defect detection 

rate of 100% and qualified bottle detection rate of 99.84%. 

Large-scale additive manufacturing (LSAM) is a developing technology in construction 

that will allow for buildings and structures to be printed with building material (i.e., cement). 

Kazemian et al. [34] proposed a MV system for real-time quality control in construction 

involving LSAM. QC for this technology is limited yet essential for human safety, therefore the 

proposed inspection system attempts to fill the void by integrating MV to LSAM devices for 

layer-by-layer inspection. Attachment of the system to existing robotic devices was shown to be 

unobtrusive. The inspection system performs preprocessing to the extent that the images of the 

layer being extruded are isolated and converted to a binary image. The width of the layer 

determines whether the material is being over or under-extruded. Using a calibrated pixel per 

inch ratio, a conversion is easily available. The system performance showed inspection abilities 

down to an inch, and, as shown in Figure 4, was able to classify over and under-extruded layers. 

An early test of a vision-based closed-loop extrusion system showed that the proposed system 

could self-correct extrusion rates to be within ±10% of the desired rate in less than three seconds.  

 

https://www.sciencedirect.com/science/article/pii/S0926580518307751
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Figure 4: Examples of Detecting Different Extrusion Conditions Through Developed Vision System (Source: 

Kazemian et al. [36]) 

To ensure physical requirements of slate slabs used for roofing are met, Iglesias et al. 

[35] proposed a MV system that returns feedback on whether a slab has surface irregularities, 

warping, false squaring, material defects, flowerlike staining, and sulphides. The system inspects 

for these six defects with a camera providing range, grey, and RGB values. Regarding 

dimensional analysis, the following defects were looked at: material defects, warping, and false 

squaring. Detection of material defect involved comparing an uncut slab to a theoretical 

rectangular slab. The two were overlapped and an area difference was used to calculate a ratio 

and a rectangularity value. Warping was analyzed by cropping the four corners and center of a 

slab and comparing the mean pixel values of each part. False squaring detection used the 

assumption that the slabs were cut and square in shape. The algorithm found angles in the slab by 

considering the corners formed by its edges, and angle deviations from 90º were considered to 

assess the overall shape quality. The proposed system performed satisfactory in judging the 

quality of slabs in contrast to human expert graders. 

A dimensional measurement MV system was developed by Lee and Yeh [36]  for threads 

in computer numerical control (CNC). A thread contains a set of sinusoidal shaped grooves. The 

system used inspected the distance from one peak to the next and the depth from peak to root. 

https://www.sciencedirect.com/science/article/pii/S0166361516303530
http://www.iaeng.org/publication/IMECS2019/IMECS2019_pp67-72.pdf
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Image acquisition was performed on an in-place, cleaned thread. A region of interest (ROI) was 

defined to reduce image processing, and image correction and filtering followed. Canny edge 

detection was performed on a binarized image. Using the thread profile and a scale of 6.224 µm 

per pixel, the researchers achieved measurements with a maximum error of 3.162 µm and a 

standard deviation of 0.310 µm. In the experiments performed, the system’s measured error was 

under 1% of the actual value. 

The case studies and contributions identified demonstrate the variety of applications MV 

systems have in performing dimensional analyses. Geometric inspections are commonly 

performed in QC, therefore manufacturers could benefit from extending or replacing outdated 

methods with the efficiency and reliability of MV systems. 

 

2.3- State Research on Product Surface Analysis 

MV systems can provide a nearly thorough visual quality inspection when dimensional 

analysis is paired with surface analysis. Some useful properties analyzed from the surface of an 

object is continuity, reflectivity, coloring, and texture. For QC these properties can provide 

invaluable insight on factors unachievable through dimensional analysis, such as strength of a 

wall or health of a fruit. Furthermore, surface analysis can be a mere expansion of computational 

tasks on images already acquired for dimensional analysis. Therefore, as research continues 

advancing techniques for surface analysis and MV hardware improves, usage of surface analysis 

will be commonplace in the factories of the future. 

Joshi and Patil [37] propose measuring surface texture of hand grinded surfaces using a MV 

system. The surface is measured on roughness, which is the dependent variable for a linear 

regression model created. To form the independent variables used for the regression model, a 

https://www.sciencedirect.com/science/article/pii/S1877050920307080


  

19 

 

grey-level co-occurrence matrix (GLCM) is first used to derive surface texture characteristics 

from an image. A principal component analysis (PCA) is then carried out on the data, and the 

resulting PCA scores are used as independent variables to regression model. The automated, 

contactless procedure of the method brings encouragement from the researchers to have it 

adapted for use on other industrial machining processes. 

Wang et al. [38] improved surface quality inspection by developing a deep learning model 

that reduces computational expense. The method developed begins by using a Gaussian filter to 

reduce noise after image acquisition. The background of images is removed using a Hough 

transform, which produces a region of interest. Performing background removal allows for 

reduced processing time in final steps. Finally, a lightweight neural network (NN) is used for 

feature extraction and defect detection. The NN uses an inverse residual block that effectively 

reduces the model size and allows the computational burden to be offloaded. The MV system 

was tested on empty wine bottles, such as in Figure 5. The system could detect defects in the 

wine bottles at an accuracy of 99.60% and an average inspection time of 47.60 milliseconds per 

image. 

 

 

https://www.sciencedirect.com/science/article/pii/S0278612519300111
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Figure 5: Defect Types a) Small Foreign Matter, b) Large Foreign Matter, c) Contamination (Source: Wang et al. 

[42]) 

Friction stir welding (FSW) is a welding technique that uses the friction from a rotating 

shaft ran against two materials to join them together. A MV system for FSW was developed by 

Sudhagar et al. [39] to inspect a welded surface and classify it as good or bad. The methodology 

used in developing the system was to perform a greyscale conversion on acquired images, then 

use the Maximally Stable Extremal Region (MSER) algorithm for feature extraction, and, lastly, 

classify the images with support vector machine (SVM). An experiment was performed altering 

parameters, such as weld speed and tool rotational speed, for the welding process and judging the 

weld quality. Ultimately, it was found that the system could achieve a 95.8% detection accuracy 

using a linear or quadratic kernel. 

In order to determine the tenderness of beef, considered the most important factor in 

judging the meat’s quality, Hosseinpour et al. [14] developed a smartphone app that acts as a 

MV system for this. A textural analysis on the beef surface through gray level co-occurrence 

matrix (GLCM) provides features that were found to be highly correlated to tenderness. From the 

extracted textural features, principal component analysis (PCA) was performed. The PCA scores 

were used to train a Feedforward Multi-layer Perceptron (MLP) neural network (NN) that 

contained 10-30 hidden layers. The researchers developed a set of algorithms to handle 

uncontrolled environmental conditions while operating the smartphone. Illumination, rotation, 

scaling, and translation are factors automatically handled by the created Android app that could 

normally affect accuracy. In an experiment on thirty unseen beef samples, the app predicted 

tenderness values (Warner Bratzler shear force) with a mean-squared error, mean absolute 

percentage error, and coefficient of determination of 3.34, 3.74%, and 0.99, respectively. Besides 

https://www.sciencedirect.com/science/article/pii/S0263224119304348
https://www.sciencedirect.com/science/article/pii/S0260877418305284#sec4
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providing valuable information on a highly consumed product, the research demonstrates the 

capabilities of a MV system being mobile and handling robust conditions.  

Further contributing to research on produce, Kumar et al. [40] achieved a MV system 

able to classify tomatoes and non-tomatoes, recognize tomatoes ripeness level, and analyze a 

tomato surface for three possible infections (black spots, cankers, and Melanose). The MV 

system first performs image acquisition, then feature extraction from which 24 features are 

extracted. Species classification is done using 14 features and ripeness detection is done using 

just a mean green feature. Each of the considered tomato infections had specific features used to 

categorize it. By finding the area of the infection, through a Gabor filter, and using nine other 

features, the researchers were able to classify infections using a multiclass support vector 

machine (MSVM). The surface inspection results achieved were 92.31%, 100%, and 92.86% for 

black spots, cankers, and Melanose, respectively. The proposed method operated with a 

sufficiently high accuracy and precision when considering the number of features needed by it. 

Shin et al. [17] devised a MV system to inspect strawberry leaves for powdery mildew 

(PM), a fungal disease. The researchers used three surface analysis techniques for feature 

extraction and compared their results: histogram of oriented gradients (HOG), SURF, and gray 

level co-occurrence matrix (GLCM). Additionally, artificial neural network (ANN) and support 

vector machine (SVM) were used to classify the features extracted. Ultimately, the best 

combination of the surface analysis technique and classifier was optimized. The researchers 

experimented with 254 images and augmented each by rotating it 90º, 180º, and 270º from the 

original position resulting in 1016 images to be used. Augmenting the images allowed for the 

experiment to better reflect real-world conditions. Classification accuracy (CA) was primarily 

concerned in the results, however the researchers did emphasize the elapsed time for each 

https://www.sciencedirect.com/science/article/pii/S0141933119307057
https://www.sciencedirect.com/science/article/pii/S1537511020300799
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combination was considered. It was found that the most accurate combination was ANN and 

SURF, which resulted in a classification accuracy of 94.34% using an image resolution of 908 x 

908. The best results for the SVM classification method was with GLCM, which had a 

classification accuracy of 88.98% using an image resolution of 908 x 908. It was reported that 

although the HOG and SVM combination resulted in an accuracy of 78.36%, the two are useful 

for real-time applications because of the drastically smaller processing time required in contrast 

to the other surface analysis techniques. 

Smith et al. [41] used the MV technique of photometric stereo (PS) to perform high 

resolution surface analysis for agricultural weed detection and extermination. PS is a technique 

developed by Woodham [42], which requires the use of at least three differently placed light 

sources and a single camera to evaluate the reflectivity of an object’s surface. A 3D surface can 

be reconstructed using this technique and submillimeter detail is achievable, as shown in Figure 

6. The researchers argue that PS allows for greater surface inspection abilities over those of an 

RGB-D device, such as the Kinect, due to reduced complexities in system setup, lessened noise, 

and greater detail acquisition. To make PS a practical technique for weed extermination, the 

researchers modified the technique to have it be used on a moving tractor. The modification 

made was to use only two near-infrared lighting sources, which would not provide sufficient data 

for 3D reconstruction but enough to target an essential part of a weed. Classification of weeds 

was accomplished using a support vector machine and neural network. Additional work the 

researchers suggest using PS for is inspection of potatoes for diseases and damage.  

 

https://www.sciencedirect.com/science/article/pii/S0166361517305663
https://www.cs.ubc.ca/~woodham/papers/Woodham80c.pdf
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Figure 6: Four Images Acquired Using Different Lighting Sources, an Albedo Image, and a 3D Reconstruction 

(Source: Smith et al. [45]) 

Also taking on a precision agricultural problem, Asaei et al. [43] developed a MV system 

to identify tree canopies for precise pesticide spraying. The intricate electromechanical system 

used LabVIEW for real-time identification of treetops. Once a green color threshold was 

exceeded, the researchers used 10%, this indicated that sufficient greenage was in the camera 

view and the spraying system should be activated. In a field test, the researchers used the MV 

system to spray water, acting as pesticide, on water sensitive paper (WSP). Measurements from 

the WSP were calculated using an image processing toolbox in MATLAB. To do this RGB 

images of the WSP were acquired and converted to the HSV color space, where the hue 

component was only considered to segment droplets from the images for counting and area 

sizing. The results showed that at all speeds the system was tested moving through the field it 

could lead to at least a 54% reduction in pesticide spraying. 

Zhuang et al. [44] advanced the detection of citrus fruits by MV systems to accelerate the 

process toward fully automated harvesting. A monocular vision system using the visible light 

spectrum could identify mandarins growing individually or in clusters. The proposed system 

acquired images that were preprocessed using the block-based local homomorphic filtering 

algorithm, which compensated for non-uniform illumination. Adaptive enhanced RG chromatic 

mapping was then used to further increase contrast in the foreground and background of images. 

https://www.sciencedirect.com/science/article/pii/S0168169917311043
file://///users/dvr874/Desktop/UTRGV/Student%20Research/Reyna,%20Mark/Summer%201%20MV%20DQC%20Overview/1.%2509Detection%20of%20orchard%20citrus%20fruits%20using%20a%20monocular%20machine%20vision-based%20method%20for%20automatic%20fruit%20picking%20applications,%20Zhuang%20et%20al.
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Clustered fruits were separated using the MCWT method, which identified each fruit by a 

different color. Trouble with over-segmentation was taken care of by the convex hall operation. 

An LBP, a local texture descriptor, was used as the input for a support vector machine (SVM) 

classifier. The proposed system had a recall of 0.862 and a detection speed of 1.9 fps. 

Kumar and Kumar [45] explored the surface roughness (Ra) estimation quality of a MV 

system when varying light colors were used. In the experiment conducted, yellow, white, and 

blue light were used to illuminate 12 objects 3D printed with ABS material. After image 

acquisition and preprocessing, five Grey Level Co-Occurrence Matrix features were extracted 

from the images. Using entropy, contrast, correlation, energy, and homogeneity as inputs, an 

artificial neural network (ANN) was created to predict surface roughness. The quality of the 

output by the ANN was compared to the output of a dedicated surface roughness measuring 

device. The results of the experimented showed that the blue light had the greatest correlation 

(0.7906) between the ANN prediction and the measuring device. The yellow light had a 

correlation of 0.4573 and the white light has a correlation of 0.3525. The researchers propose 

further experimentation with other light colors and material colors. 

The identified contributions on surface analysis showed how MV systems are being used 

to study textures, colors, and patterns on products. Manufacturers are gaining insight on 

important textural features through the non-destructive use of MV. Additionally, achieving color 

accuracy in production processes is making headway with MV systems, as is the use of precise 

color identification. 

 

 

 

https://www.sciencedirect.com/science/article/pii/S0263224119311613
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2.4- Literature Discussion 

 

 Table 1 summarizes the applications and techniques of the literature considered in this 

chapter. 

Analysis Type Application Domain Techniques Used for Digital Quality 

Control 

Product Free-Form 

Analysis 

Natural products and leather 

cutting examination 

Polygonal curve deviation using Single-

segment and Multiple-segment 

Inspection of micro-milling 

tools 

Root mean square deviation (RMSD), 

Exponential transform, Infinite 

symmetric exponential filter 

Inspection and optimal 

parameter identification in 

alloys 

Taguchi technique, Blob analysis 

Sorting and recycling of non-

ferrous materials 

PCA-SVM, Response surface 

methodology, Numerical simulation 

Agricultural produce 

deformities inspection 

Linear regression, Oval Difference 

Degree, Grid Calculation, Hollow 

detection 

Tracking and processing 

livestock 

Convolutional Neural Network (CNN), 

Rotation, scale, and translation 

augmentation techniques 

Identifying fatigue cracking in 

metallic compounds 

Deeply Supervised Object Detector, 

YOLO algorithm, Single Shot MultiBox 

Detector, DenseNet algorithm 

Inspection of microscale e-jet 

printing 

Blob analysis, Otsu thresholding 

algorithm, Morphological operations: 

erosion and dilation 

Automate produce harvesting Fully Convolutional Network, Blob 

analysis, Stereo image analysis 

Examination of construction 

steel frames 

Hough Transform, CED, Harris corner 

algorithm 
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Product Dimensional 

Analysis 

Determining precise 

measurements of industrial 

equipment 

Subpixel edge detection, CED, Otsu 

thresholding, Taguchi method, Least 

squares regression 

Agricultural produce 

deformities inspection 

CED, Sobel edge detection, Support 

Vector Machine (SVM), Median filter 

Inspection of alcoholic bottle 

quality 

Fourier transform, Blob analysis, Least 

square circle fitting, Edge points double 

classifying 

Examination of additive 

manufacturing for 

construction 

Otsu thresholding, Blob analysis 

Inspection of slate slabs Texture analysis, Local binary pattern 

methods 

Product Surface Analysis 

Texture characterization for 

grinded surfaces 

Grey level co-occurrence matrix 

(GLCM), Principal component analysis 

(PCA), Multiple regression analysis 

Inspection of wine bottles Hough transform, CNN, Depthwise 

convolution and pointwise convolution 

Examination of friction stir 

welding 

Maximally stable extremal region 

algorithm, SVM 

Analysis of beef tenderness 

via a mobile system 

Rotation, scale, and translation 

augmentation techniques, GLCM, 

Feedforward Multi-layer Perceptron 

neural network, PCA 

Agricultural produce 

deformities and disease 

inspection 

Top hat filter, Gabor wavelets, Multiclass 

SVM, Histogram of oriented gradients, 

Speed-up robust features, GLCM, Neural 

Network 

Agricultural field and garden 

inspection 

SVM, CNN, Homomorphic filtering, 

Convex hull operation, Histogram 

intersection kernel, GLCM 

Table 1: Categorization of Product Quality Inspection Techniques Across Various Application Domains 
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QC systems using MV are shaping the future of how product inspection will be 

performed. The research contributions highlighted in this chapter describe the success 

contemporary systems are having in efficiently, accurately, and consistently performing 

inspection tasks. The progress achieved in identifying new techniques and improving already 

existing techniques for digital quality inspection systems is at par with human abilities or better, 

and indicative of a complete supersession in the years to come. In nearly all cases, the reported 

work attained results that were satisfactory in product inspection tasks. If the ultimate state of a 

system was undesirable, it nonetheless led to ideas and suggestions of where future work could 

be directed for improvements.  

Machine learning was commonly used in the reported systems for its classification and 

identification abilities. However, a repeatedly mentioned limitation of using ML techniques was 

the lack of training data available to improve classification accuracy and generalization. The 

expectation is that overtime the available datasets will improve in quantity and quality, thereby 

enhancing the performance of the methods used. The two most used ML models were support 

vector machines (SVM) and neural networks (NN), specifically convolutional neural networks 

(CNN). The former model is a classification method that constructs a hyperplane through a set of 

data in p-dimensions. This separation technique is used for final quality classification and in 

combination with other models in quality inspection systems. CNN is a deep learning class that 

has grown to be widely used for imagery analysis due to its speed and low error rates. When 

learning, this multilayer NN extracts features from images that allow it to accurately execute MV 

tasks without the need for manual feature training. CNN is primarily used for quality 

classification. 
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Another important challenge that continues to be explored is the versatility of quality 

inspection systems under uncontrolled environmental conditions. Some of the MV systems used 

were designed with an intent to operate outdoors where inconsistent lighting is one of many 

environmental factors that can affect output validity. While significant consideration was given 

to overcome these problems, there remains a need to improve robust handling. Furthermore, 

present and future inspection product inspection systems could benefit from having highly 

dependable rotation, scale, and translation augmentation techniques. Such improvements could 

increase the number of mobile inspection systems, as was demonstrated by Hosseinpour et al. 

[14], or assist with handling vibration and movements in factory settings. 

Evidently the use of MV systems is permeating through a wide range of manufacturing 

processes. The scale of the developed inspection systems is both at a micro level, such as the 

microscale e-jet printing inspection by Lies et al. [27], and at a macro level, as in the 

examination of large-scale additive manufacturing for construction by Kazemian et al [36]. Food 

manufacturing processes such as rice quality inspection (Chen et al. [33]) are benefitting from 

MV systems agility. Underdeveloped processes such as the recycling of nonferrous metals 

(Wang, Chao et al. [21]) are growing in efficiency and reliability using MV systems. Some 

researchers have already presented nearly autonomous systems that are able to act in a variety of 

ways based on the perception of their system, such as the kiwi harvester (Williams et al. [28]) 

and trout processor (Azarmdel et al. [25]). Continuously advancing equipment and techniques 

are sure to further expand the scope of issues and complexities to which MV systems can be used 

for in product quality inspection. 
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2.4.1 Discussion on Free-form Analysis 

A product inspection system is categorized as being able to perform free-form analysis if 

its inspection tasks dealt with analyzing products of complex forms or having complex areas. As 

summarized in Table 1, several techniques were utilized to perform product inspection across 

domains for multiple applications. Common throughout the free-form analysis literature is 

contrasting the detected area/shape of a product to that of what it should be, such as leather hide 

inspection system developed by Pacella et al [19]. Additionally, the Otsu thresholding method is 

observed to be commonly used in the free-form analysis techniques to distinguish the foreground 

and background of images. Analysis of complex forms is greatly facilitated by this thresholding 

technique that binarizes images in a computationally efficient manner. Lastly, blob analysis was 

used in several papers to obtain the form of an item under inspection. Blob analysis extracts the 

contour for an item of interest based on a specified grey-scale pixel intensity range. Once a blob 

is determined, information on the subject can be determined, such as perimeter or area in pixels. 

Conversion from pixels to distance can be determined through calibration. Blob analysis 

provides a relatively simple method for finding the 2D shape of an item. 

2.4.2 Discussion on Dimensional Analysis 

The literature concerning dimensional analysis for product quality inspection largely used 

Canny edge detection and in a single case, Sobel edge detection. Canny edge detection is a 

popular computer vision algorithm that uses calculus of variations to achieve lower error rates 

and denoising functionality. Part of the Canny edge detection algorithm is using a Gaussian 

filter, a commonly used technique to provide necessary smoothing in an image. 
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2.4.3 Discussion on Surface Analysis 

A popular approach for textural analysis is the use of a grey level co-occurrence matrix 

(GLCM) to extract features over a surface. Features such as contrast, correlation, energy, and 

homogeneity can be used as inputs for machine learning models. An example of this is the 

characterization of surface texture in hand grinded surfaces as illustrated by Joshi and Patil. 

Color analysis, a form of surface analysis is also greatly used. Closely examining color values is 

critical to much of the agricultural and food related product inspection, such as the mature 

mandarin detection system developed by Zhuang et al. [48] where an adaptive enhanced 

red/green chromatic mapping was used to identify the ripe citrus food for harvesting. 

2.4.4- Algorithms Observed 

A brief overview of commonly used algorithms is provided in the following paragraphs. 

Taguchi method (or technique) consists of statistical methods developed for QC in 

manufacturing. The methods developed use a monotonic loss function if the production situation 

is improved by exceeding or falling below a target, or a square-error loss function if the 

production situation requires a strict target be met. Taguchi methods have expanded since their 

development to other areas of engineering. 

Principal component analysis is a dimensionality reduction technique applied to datasets 

and commonly used in ML. By dimensionally reducing a dataset, analysis is simplified at the 

cost of some accuracy. PCA is performed by first standardizing all variables in the data to a 

range of 0 to 1. Next, a covariance matrix is calculated for all the used variables, which based on 

the covariance sign value can indicate how two variables are correlated. Following this the 

eigenvectors and eigenvalues are computed to identify the principal components. The 

eigenvalues calculated from the covariance matrix indicate the significance of each principal 
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component. Lastly, only the most significant eigenvectors can be selected in a feature vector to 

achieve dimensionality reduction. Using the feature vector, the original data is recast to meet the 

dimensionality formed by the principal components. 

Support vector machine (SVM) is a ML technique used for classification. The technique 

is an example of supervised learning that attempts to find a hyperplane that passes through two 

classes. The hyperplane may pass through high-dimensional space to separate two classes. Once 

the hyperplane is determined, a new input can be classified based on where it is relative to the 

hyperplane. The hyperplane is generally designed to have the greatest distance between the two 

classes to improve its generalization. 

A convolutional neural network (CNN) is a deep neural network class mostly used for 

image analysis. CNN are a multilayer perceptrons prone to overfitting data but there are ways to 

prevent this. A significant advantage of using CNN is that the network filters are determined 

through the automated learning as opposed to manually determining them through traditional 

methods. CNN’s excellent performance has led to its use in numerous applications. 

Grey-level co-occurrence matrix is an image processing method used for textural analysis 

in an image. The method relies on comparing pixel intensity values to make a quantified 

judgement on how an item in an image may be texturally. In addition to the applications 

presented in this literature survey, this method is often used for medical image analysis. 

Considering the problem statement of this thesis calls for a robust and adaptable system 

that can perform dimensional and surface inspections, the literature reviewed showed blob 

analysis could be used to accomplish that. The literature on free-form analysis presented how 

blob analysis is used to inspect the varying shapes and sizes produce can come at, the literature 

on dimensional analysis presented how blob analysis is used to determine the dimensions of 
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bottles, and the literature on surface analysis showed blob analysis is used to identify defects on 

wine bottles. Therefore, blob analysis serves as a useful technique in accomplishing the goals of 

this work.



* The work illustrated in Chapters 3 and 4 is featured in the Complex Adaptive Systems Conference 2021. 

Aditya Akundi and Mark Reyna, A Machine Vision Based Automated Quality Control System for Product 

Dimensional Analysis, 2021. 
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CHAPTER III 

 

PROPOSED MACHINE VISION SYSTEM 

 

The developed QC system consists of a 5MP, CMOS industrial camera made by 

Hikvision, a circular LED light source, and a metal rig (Please see Figure 7).* The LED light 

source allows for the light intensity to be adjusted from off to peak brightness. The metal rig is 

approximately 17.5 x 8.5 inches and allows for a robotic arm to be interlocked in the rig. The 

modular design of the rig provides a convenient and precise way to use a robotic arm in the QC 

system. 

 

 
Figure 7: Machine Vision Setup Used. 
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Image processing is performed on the Dobot Vision Studio application which provides a 

simple interface to operate on and organized feedback on data processed. Blob analysis is an 

example of an image processing technique used on Dobot Vision Studio largely used in this 

thesis. Dobot Vision Studio allows for multiple hardware devices to connect and communicate 

with each other, which is shown with the robotic arm in Chapter 6. The computer running the 

Dobot Vision Studio application is a Dell Inspiron with an i7 10th generation processor and 16 

GB of memory.  



* The work illustrated in Chapters 3 and 4 is featured in the Complex Adaptive Systems Conference 2021. 

Aditya Akundi and Mark Reyna, A Machine Vision Based Automated Quality Control System for Product 

Dimensional Analysis, 2021. 
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CHAPTER IV 

 

PRODUCT INSPECTION BASED ON DIMENSIONAL ANALYSIS 

 

The algorithm used in the proposed QC system compares the dimensional likeness of 

similar products (i.e. products of the same geometric shapes).* An overview of the algorithm 

(Figure 8) is provided: 

1. First, perform an inspection on an exemplar object known to meet the desired design 

specifications. 

2. Store parameter data from the qualified object for future comparison. 

3. Iterate a loop indefinitely, or a specified number of times, with each iteration performing 

an inspection on a new object. The data collected from each new object is compared to the 

initial object and given a percent rating on its likeness to the initial object. A new object is 

considered acceptable if it lies within a specified tolerance. 

 

The dimensional inspection process is currently designed to analyze the surface of an object from 

a top view. This process is considered robust for its handling of complex shapes and geometries. 

Examples of shapes capable of analysis are sinusoidal objects, gapped objects, and objects with 

varying edge patterns. The dimensional inspection process performs a blob analysis which 
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extracts the contour of a surface in an image [8]. The blob analysis uses a single threshold mode, 

a light blob to dark background polarity, and a minimum object pore area of 100 pixels in a 1600 

x 1600 image. The object under inspection can be placed anywhere within the area captured in 

an image and can be rotated any degree about an axis orthogonal to the base and camera. No loss 

in accuracy results from these translations and rotations. Additionally, the average run time for 

the proposed algorithm is 266 ms per item after the delay for object replacement has been 

removed, which improves upon the speeds of the 0.5 s time in the work by Zhang et al [6]. Using 

a calibrated camera, the system can output the physical distance of a surface’s perimeter and 

area. Therefore, if an object known to meet the desired physical design specifications is 

available, it can serve as the initial object for the algorithm considered. If no initial object is 

available, the expected parameter values can be manually inputted. The algorithm provides a 

strong comparison of how a set of products appears relative to a base. Four parameters are 

considered in the algorithm’s likeness scoring: 1) perimeter, 2) area, 3) rectangularity, and 4) 

circularity. The perimeter is measured as the number of pixels in an object’s outline contour. 

Computing the perimeter is as follows, 

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 = ∑ ∑ 𝑝𝑖𝑥𝑒𝑙_𝑐𝑜𝑛𝑡𝑜𝑢𝑟(𝑚, 𝑛)
𝑙𝑒𝑛𝑔𝑡ℎ
𝑛=1

𝑤𝑖𝑑𝑡ℎ
𝑚=1                 Equation 1 

, where width and length can be determined from the image size and the pixel_contour function 

returns a 1 or 0 if the pixel is on the contour (1) or not (0), respectively. Similarly, area is 

measured as the number of pixels contained in an object. Computing the area pixel count is as 

follows, 

𝐴𝑟𝑒𝑎 =  ∑ ∑ 𝑝𝑖𝑥𝑒𝑙(𝑚, 𝑛)
𝑙𝑒𝑛𝑔𝑡ℎ
𝑛=1

𝑤𝑖𝑑𝑡ℎ
𝑚=1                              Equation 2 

, where the pixel function returns a 1 or 0 if the pixel is in the blob or not, respectively. 

Rectangularity measures the area filled by the object over the area filled by the smallest 
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circumscribed rectangle containing the object and outputs a value from 0 to 1, where 1 is a pure 

rectangle (Equation 3). Likewise, circularity measures the area filled by the object over the area 

filled by the smallest circumscribed circle containing the object and outputs a value from 0 to 1, 

where 1 is a pure circle (Equation 4). 

𝑅𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦 =
𝐴𝑟𝑒𝑎𝑓𝑖𝑙𝑙𝑒𝑑

𝐴𝑟𝑒𝑎𝑆𝐶𝑅
    Equation 3 

𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦 =
𝐴𝑟𝑒𝑎𝑓𝑖𝑙𝑙𝑒𝑑

𝐴𝑟𝑒𝑎𝑆𝐶𝐶
                                        Equation 4 

, where in equation 3 Areafilled is the area filled by the product and AreaSCR is the area filled by 

the smallest circumscribed rectangle over the product. Likewise, in equation 4 the Areafilled is the 

area filled by the product and AreaSCC is the area filled by the smallest circumscribed circle over 

the product. These four parameters can simultaneously be measured and are expressed in the 

likeness score as shown in equation 5. 

𝐿 = 𝑎𝑃 + 𝑏𝐴 + 𝑐𝑅 + 𝑑𝐶                                    Equation 5 

Where, a, b, c, and d, are weights assigned to prioritize parameter values. P, A, R, and C are 

respectively, the perimeter, area, rectangularity, and circularity. These values are calculated 

using equation 6. 

𝑋 = 1 −
|𝑥𝑛𝑒𝑤−𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙|

𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙
                                      Equation 6 

Where xnew can be substituted with a parameter from a product being compared and xinitial can be 

substituted with a parameter from a desired product. Finally, the QC system determines whether 

a product inspected should be accepted or rejected based on product geometrical similarity. This 

decision is based on a predetermined threshold that can be altered to be highly selective or more 

tolerable. 
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Figure 8: Proposed Machine Vision Algorithm for Product Dimensional Analysis 

A step-by-step process flow of the algorithm is provided here: 

1. Capture a grayscale image of an initial item that best meets the quality requirements. 

2. Perform dimensional analysis on the image in step 1. 

3. Store parameter data values for future comparison use. 

4. Capture image of new item. 

5. Perform dimensional analysis on image from step 4. 

6. Using parameter data in step 5, calculate likeness score for an item. 

7. Check if likeness score is within threshold range (a greyscale intensity value from 0 to 

255). Output result for proper item handling. 

8. Repeat steps 4-7 a desired number of iterations. 

 

4.1- Initial Test Results and Discussion 

4.1.1- Common Shapes 

To test the performance of the proposed QC system, three common shapes were used: 

cubes, cylinders, and sinusoids (Figure 9). The items tested were printed using MakerBot 3D 
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printers, which allowed for rapid dimensional alterations. Data collected from several cube test 

comparisons is shown in Table 1. The base items are those that would be test standards and the 

tested are those compared to the base. As shown in Table 1, the likeness scores obtained when 

comparing two dimensionally different objects are low. Furthermore, when observing the 

likeness scores of dimensionally equal objects, a perfect or near-perfect likeness score is 

obtained. 

 

 
Figure 9: Shapes Used for Testing 

Shape Base Tested Likeness Score 

Cube 5 cm 5 cm 1.000 

Cube 5 cm 4 cm 0.794 

Cube 4 cm 3 cm 0.740 

Cube 3 cm 2 cm 0.678 

Cube 2 cm 2 cm 0.999 
Table 2: Cube Test Comparison 

An example of the full data used to calculate the likeness score for base 4 cm and tested 3 

cm in Table 1 is shown in Table 2. Note that the values shown in the table are in pixels and have 

not been converted to distance. Additionally, the coefficients a, b, c, and d used for the likeness 

score are 0.4, 0.4, 0.1, and 0.1, respectively. These values were selected to prioritize perimeter 

and area in making a quality decision. In the case that an item contains the same perimeter and 
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area but not shape as an intended item, the rectangularity and circularity scores can flag this 

unique instance. 

Item Area Perimeter Circularity Rectangularity 

Cube 4 cm 173503.000 1780.497 0.647 0.985 

Cube 3 cm 92641.000 1297.453 0.638 0.984 
Table 3: Test Case Data 

Data on the tests performed for cylinders and sinusoids is provided in Table 3 and Table 4. In 

Table 3, r is the radius of the cylinder and h is the height of the cylinder. In Table 4, l is the 

length of the sinusoid and w is the width of the sinusoid. 

Shape Base Tested Likeness Score 

Cylinder r = 4 cm, h = 2 cm r = 4 cm, h = 2 cm 0.999 

Cylinder r = 4 cm, h = 2 cm r = 3 cm, h = 3 cm 0.771 

Cylinder r = 3 cm, h = 3 cm r = 3 cm, h = 3 cm 0.999 

Cylinder r = 3 cm, h = 3 cm r = 2 cm, h = 4 cm 0.701 

Cylinder r = 2 cm, h = 4 cm r = 2 cm, h = 4 cm 0.999 
Table 4: Cylinder Test Comparison 

Shape Base Tested Likeness Score 

Sinusoid l = 1 cm, w = 7.5 cm l = 1 cm, w = 7.5 cm 0.995 

Sinusoid l = 1 cm, w = 7.5 cm l = 0.8 cm, w = 7.1 

cm 

0.099 

Sinusoid l = 1 cm, w = 7.5 cm l = 2.5 cm, w = 7.5 

cm 

0.948 

Table 5: Sinusoid Test Comparison 

4.1.2- Complex Shapes 

A complex shape inspection was performed to demonstrate the proposed QC system’s 

capabilities. The complex shape used contains a single point edge, a squared-bumps edge, a 

circular-bumps edge, and a triangular-bumps edge. Figure 10 shows the image results of the 

inspection between a base complex part with a 7 cm inner square reaching each corner and the 

base part shrunken by 95%. Additional inspections and data are provided in Table 5, showing 

how the system performed with the same base part against an alike part and an enlarged part. 

Shape Base Tested Likeness Score 

Complex Part Inner square = 7 cm Inner square = 7 cm 0.996 
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Complex Part Inner square = 7 cm Base shape • 0.95 0.948 

Complex Part Inner square = 7 cm Base shape • 1.05 0.949 
Table 6: Complex Part Test Comparison 

 
Figure 10: (a) Original Complex Part; (b) Complex Part Shrunken to 95% 

4.1.3- Frustums 

Although the QC system proposed performs well for items with entirely uniform cross-

sections, the system at its current stage is unable to properly inspect items that have varying 

cross-sections. An example of this shortcoming is the frustrum shape, which is like a pyramid 

that has had its upper section sliced. The inspection system misidentifies the top surface with the 

larger bottom surface, therefore reports incorrect data. 

4.1.4- System Accuracy 

To demonstrate the inspection capabilities of the proposed system, a test was performed 

using four cubes with slightly varying dimensions to the base. The base cube’s sides are 3 cm, 

while the tested cubes have sides of 2.8 cm, 2.9 cm, 3.1 cm, and 3.2 cm. The test results are 

shown in Table 6 and the blob analysis for the tested 3.1 cm cube is shown in Figure 11. The 

likeness scores in Table 6 demonstrates the system’s capacity to identify millimeter-level 

defects. In application, a high likeness score threshold can be set to avoid even minor 

dimensional deviations. 

 

Shape Base Tested Likeness Score 

Cube 3 cm 3 cm 1.000 
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Cube 3 cm 2.8 cm 0.924 

Cube 3 cm 2.9 cm 0.958 

Cube 3 cm 3.1 cm 0.958 

Cube 3 cm 3.2 cm 0.923 
Table 7: Cube Test with Minor Dimensional Changes 

 
Figure 11: (a) Dimensional Analysis 3 cm Cube; (b) Dimensional Analysis 3.1 cm Cube 
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CHAPTER V 

 

PRODUCT INSPECTION BASED ON SURFACE ANALYSIS 

 

 The goal of surface analysis in this thesis is to identify areas on an object’s surface that 

are outliers in coloration with respect to the entirety of the object. Examples of surface defects 

that result in dissimilar coloration on a surface are dents, bumps, scratches, and material errors in 

producing the product (e.g., burning or overstretching the material). Identifying surface defects 

in quality control is important to ensuring the desired aesthetics and functionality of a product 

are met. As mentioned in the introduction, a product failing to meet the desired aesthetics will be 

unattractive, possibly resulting in reduced sales. Functionally, a surface defect will indicate a 

product’s design has not been perfectly met, which could mean its mechanical integrity is 

corrupted. A functional failure could have dire consequences, as in the case of a vehicle break 

failure, therefore incorporating surface analysis in QC could be worthwhile in decreasing such 

failures. 

 

5.1- Hardware and Algorithm 

MV is naturally advantageous for the mentioned surface analysis concerning coloration 

since colored images are inspected. The surface analysis in this work uses grayscale images that 

are 1600 x 1600 pixels. The QC system used for surface analysis operates with the same 

equipment and software for dimensional analysis in Chapter 4. Furthermore, the same images 
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used for dimensional analysis can be used for surface analysis. Therefore, placement of an item 

on the rig can be anywhere in the area captured in an image and be rotated in any way about the 

axis orthogonal to the rig and camera. The dimensional and surface analyses operating on exact 

copies of the same image helps reduce the overall inspection time. Additionally, the two analyses 

can be performed asynchronously in the same inspection flow since the same image is used and 

both analyses are independent of each other. 

There are two assumptions made about the product being inspected. The first is that the 

item contains a surface that is uniform and smooth. Uniform meaning that all points on an item 

are expected to appear the same in color. Smooth meaning that all points on an item are at the 

same level and no points are higher or lower relative to one another. For example, if the top 

surface of a white cube were inspected, then the assumption for inspection is that this surface is 

uniformly the same white color, as seen by the camera, and that all points on the surface are 

equidistance from a plane parallel to the camera lens. If this assumption is not met in the design 

of an item, then the system will classify nonuniform or varying height points as defects.  

The second assumption is that all pores in a design are in the specified area range, a range 

of pixels considered for area. Unlike the dimensional analysis algorithm in the previous chapter, 

the surface analysis algorithm does not compare the item under inspection to a provided base 

item. Instead the algorithm is designed to predict the intended design of an item by filling pores 

within an area range. This step attempts to remove any defects from an item and use this design 

for comparison. Blob analysis is used for both the predicted surface and the given surface. By 

using blob analysis an acceptable minimum pore area can be specified. Pores are defined here to 

be any touching pixel groups below the pixel intensity threshold found within items bodies. For 

example, the hole in a ring would be a group of pixels falling below the intensity threshold, 
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therefore would be categorized as a pore. Adjusting the minimum pore size is important in 

limiting noise during inspection and is part of what is done to prevent noise in the presented 

system. For the blob analysis attempting to identify defects, the minimum pore area is 300 px. 

Meaning any defects or designed pores under 300 px will be filtered and not identified. 

Meanwhile, the blob analysis attempting to predict the design of an item has a minimum pore 

area of 10,000 px. Setting a large minimum pore area removes most defects on a surface by 

filling any pores (noise or defects). While setting a large minimum pore area allows a surface to 

be predicted, it has the drawback of considering large defects (defects exceeding 10,000 px) as 

part of the intended design. Conversely, any designed pore that is under 10,000 px will be 

identified as a defect. The detectable surface defects are therefore 300 px on the lower bound and 

10,000 px on the higher bound. Any desired pores in an item must be greater than 10,000 px. The 

lower bound (300 px) and upper bound (10,000 px) can be easily modified to better suit an 

inspection task. However, reducing the lower bound increases the system’s probability of 

identifying noise as a defect. Increasing the upper bound allows for larger defects to be identified 

however requires that designed area pores in an item be greater than this new upper bound. The 

lower and upper bound were experimentally determined. A summary on how the system treats 

pores is provided in Table 7: 

Pixel Area Classification 

< 300 px Pore is treated as noise. 

> 300 px and < 10,000 px Pore is treated as defect. 

> 10,000 px Pore is treated as design. 

Table 8: Summary on Surface Analysis Pore Classification 

An overview of the surface analysis algorithm is as follows: 

1. An image of an item is acquired in greyscale format. 
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2. The image is enhanced to improve desired quality characteristics. 

3. The image is filtered to smooth coloration. 

4. Two blob analyses are performed. One estimating how the item under inspection 

would appear without defects and the other blob analysis identifying defects on the 

surface. 

5. The difference in acceptable area (area not defective) is determined and a decision is 

outputted. 

The enhancement made to an image in step two is as follows. The greyscale image 

captured in step one will undergo sharpness enhancements. The sharpness enhancement contains 

two parameters, sharpness intensity and kernel size. The sharpness intensity value ranges from 0 

to 1,000 where increasing this value sharpens the image. The kernel size ranges from 1 to 51 and 

decides the size of sharpness area. The sharpness intensity and kernel size used for the system 

are 550 and 30, respectively. Both values were experimentally determined to adequately sharpen 

the edges of an object while not sharpening edges of a defect. 

The filtering done to an image in step three is as follows. Once the enhanced image in 

step two of the algorithm is passed to step three, a Gaussian filter is used to suppress noise by 

smoothing pixels. The Gaussian filter is an important pre-processing step that considers a pixel 

and its neighbors, then based on a Gaussian filter kernel size makes the specified changes. The 

Gaussian filter kernel size ranges from 1 to 51 and increases images smoothness as its value 

increases. This technique blurs an image which reduces pixels with outlying color intensities due 

to noise. The Gaussian filter kernel size used is 6 which was experimentally determined. 

The design and rationale in step four were previously described in assumption two for 

surface analysis. The blob analysis predicting an item’s surface in step four returns an image 



  

47 

 

with all pixels evaluated to be acceptable. The blob analysis inspecting an item for defects 

returns an image like the blob analysis predicting the surface, however the pixels that are 

included in defective areas are excluded. Both returned images set all recognized pixels (those 

that are acceptable on the surface or predicted to be) to the max greyscale intensity of 255 

(white) and all other pixels to the minimum intensity of 0 (black). With both images containing 

binary pixels, the white pixel count can be determined for each image and then compared. This 

comparison is step five in the algorithm and based on the difference the system will decide 

whether the surface is acceptable (no defects found) or defective (one or more defect found). An 

example of an image captured by the QC system with a defect and the conversion to binary 

pixels for predicted and given is shown in Figure 12. 

 
Figure 12: Defective Item a) Unprocessed Image, b) Predicted Surface, c) Surface with Defects 

The reason for choosing to compare an item against a predicted design of itself is, as 

opposed to a base model, is to reduce noise in the comparison. The presented surface analysis 

technique uses the same image for the blob analyses, therefore noise in this image is filtered out 

or shown in both images (a comparison would show no difference due to noise). If a base model 

were used, then two separate images are required, each with some noise. Furthermore, if image 

used for the base model contains significant noise, this could lead to poor comparisons the 
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remainder of the inspection procedure. Also, the difficulty of balancing an acceptable level of 

noise and the smallest detectable defects grows with the base model comparison. 

 

5.2- Test Results 

The surface analysis performance of the proposed QC system was assessed through a 

series of inspections on 3D printed wafers. These wafers are 40 mm in diameter and 1.5 mm in 

height with a white surface. The wafers inspected either contained a surface with no defects, 

manually created defects, or defects printed in the design. The goal of these tests was to 

demonstrate how the QC system identifies plausible defects in manufacturing as well as its 

ability to handle any type of defect. 

5.2.1- Wafers with No Defects 

The test results on wafers with no defects is shown below as well as the image output for several 

trials.  

Trial Item System 

Result 

Number of 

Detected 

Defects 

Actual 

Number of 

Defects 

Area of 

Predicted 

Item 

Area of 

Examined 

Item 

1 Wafer 

with no 

defects 

Acceptable 0 0 117380 117380 

2 Wafer 

with no 

defects 

Acceptable 0 0 117405 117405 

3 Wafer 

with no 

defects 

Acceptable 0 0 117537 117537 

Table 9: Test Results on Wafers with No Defects 
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Figure 13: Output Images for Wafer with No Defects (Trials 1-3) 

Each trial was performed the same way except for the location the wafer was placed on 

the inspection area. Varying the location of the wafer was done to demonstrate the system’s 

output will remain the same regardless of item location. In each trial the expected number of 

defects was 0 and the number of defects found was 0. These trials demonstrate the system’s 

ability to correctly output no defects when there are none. 

5.2.2- Wafers with Plausible Defects 

The test results on wafers with plausible defects is shown below as well as the image 

output for these trials. These defects were either created manually with a tool or printed in the 

item. The item name provides a short description on the defect created. More information on 

how the defects appear is provided below. 

Trial Item System 

Result 

Number of 

Detected 

Defects 

Actual 

Number of 

Defects 

Area of 

Predicted 

Item 

Area of 

Examined 

Item 

4 Wafer with 

box cuts 

Defective 3 3 118538 117208 

5 Wafer with 

box cuts 

Defective 3 3 118100 116739 

6 Wafer with 

box cuts 

Defective 3 3 118361 117147 

7 Wafer with 

0.5 mm bump 

Defective 1 1 117177 112346 

8 Wafer with 

0.5 mm bump 

Defective 1 1 116832 111992 
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9 Wafer with 

0.5 mm bump 

Defective 1 1 117116 112243 

10 Wafer with 1 

mm bump 

Defective 1 1 117280 112402 

11 Wafer with 1 

mm bump 

Defective 1 1 116870 1120.03 

12 Wafer with 1 

mm bump 

Defective 1 1 117007 112095 

13 Wafer with 

continuous 

marker dots 

Defective 11 11 117688 113644 

14 Wafer with 

continuous 

marker dots 

Defective 11 11 117317 113252 

15 Wafer with 

continuous 

marker dots 

Defective 11 11 117472 113394 

16 Wafer with 

screw dents 

Defective 3 3 118348 115876 

17 Wafer with 

screw dents 

Defective 4 3 117992 115965 

18 Wafer with 

screw dents 

Defective 4 3 118363 116289 

19 Wafer with 

long scratch 

Defective 1 1 118546 116164 

20 Wafer with 

long scratch 

Defective 3 1 118121 116268 

21 Wafer with 

long scratch 

Defective 2 1 118591 117155 

22 Large marker 

blob 

Acceptable 0 1 997000 997000 

23 Large marker 

blob 

Acceptable 0 1 99880 99880 

24 Large marker 

blob 

Acceptable 0 1 99611 99611 

Table 10: Test Results on Wafers with Manually Created Defects 
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Figure 14: Trial 4- Box Cuts (Predicted and Tested) 

 
Figure 15: Trial 7- Wafer with 0.5 mm Bump (Predicted and Tested) 

 
Figure 16: Trial 10- Wafer with 1 mm Bump (Predicted and Tested) 
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Figure 17: Trial 13- Wafer with Marker Dots (Predicted and Tested) 

 
Figure 18: Trial 16- Wafer with Screw Dents (Predicted and Tested) 

 
Figure 19: Trial 19- Wafer with Long Scratch (Predicted and Tested) 
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Figure 20: Trial 22- Wafer with Large Marker Blob (Predicted and Tested) 

The results on plausible defects show the system is mostly capable of accurately 

identifying the location of these defects and output the correct response. The trials containing a 

wafer with box cuts (three thin cuts), wafers with bumps (0.5 mm and 1 mm), and a wafer with 

continuous marker dots (11 dots) correctly identified the defects each trial and the number of 

expected and actual defects were equal. In the trials containing wafers with screw dents (3 dents) 

and a long scratch (shaped like a lightning bolt) the system could correctly identify there was a 

defect however misidentified how many defects there were. In the trials containing 

misidentifications, a defect that was continuous would be broken into multiple segments causing 

additional defects to be reported. This is due to the roughly created defects containing shallow or 

thin portions that at different angles appear like the desired surface. Lastly, trials 22 to 24 were 

performed on a wafer with a large marker blob. The expectation for the system is to recognize 

this large defect however it does not. The reason for this is the area of the marker blob is greater 

than the 10,000 px upper bound specified in the previous section. Since testing was done on a 

wafer expected to be smooth, the upper bound limit could have been increased to have the 

marker blob detected. 
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5.2.3- System Lower Limitations 

The surface analysis lower limitations of the system were tested to gain an understanding 

on the depth and diameter defects that could be inspected given the previously specified bounds. 

To test for this, two wafers were printed, one with dents containing varying depths and the other 

containing holes with varying diameters. The wafer containing dents had depths in millimeters of 

1.41, 1.33, 1.27, 1.17, 1.01, 0.97, 0.90, 0.74, 0.60, 0.54, 0.44, 0.34, and 0.23. The wafer 

containing holes had diameters in millimeters of 2.6, 2.4, 2.25, 1.96, 1.80, 1.60, 1.42, 1.17, 0.93, 

and 0.66. The results from the inspections are provided below. 

Trial Item System 

Result 

Number of 

Detected 

Defects 

Actual 

Number of 

Defects 

Area of 

Predicted 

Item 

Area of 

Examined 

Item 

25 Varying 

Dent 

Depths 

Defective 10 13 117366 104249 

26 Varying 

Dent 

Depths 

Defective 12 13 117119 99915 

27 Varying 

Dent 

Depths 

Defective 12 13 117401 101679 

28 Varying 

Dent 

Widths 

Defective 5 10 118079 115705 

29 Varying 

Dent 

Widths 

Defective 6 10 117839 115604 

Table 11: System Lower Limitations 

Figure 21: Trial 26- Wafer with Varying Dent Depths
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Figure 22: Trail 28- Wafer with Varying Hole Diameters 

The results for the wafer with varying depths show the system could detect up to a depth 

of 0.54 mm. Not all trials resulted in the same number of defects which was expected since the 

defects were cleanly generated. The reason for this is likely due to how the lighting reflected off 

the shallow dents in certain locations on the inspection area. This issue can be overcome by 

improving the lighting source to better distribute light. Additionally, the defects on the upper half 

of Figure 21 are not complete circles. This is due to the kernel size in the sharpness filtering step 

brightening the pixels near it. Although reducing the kernel size could address this issue, 

maintaining edge sharpness was deemed more significant in the overall surface analysis. The 

results for the wafer with varying diameters show the system could detect up to the diameter of 

1.60 mm. Again, the trial results did not have a consistent number of defects detected. The 

reason for this is partially needing to improve the lighting distribution as well as improving the 

resolution of the 3D printer used. 

The surface analysis proposed in this QC system offers a technique for identifying any 

number of surface defects on an item. Some defects demonstrated in the previous sections were 

scratches, bumps, dents, and markings. These defects were selected because they are plausible in 

the manufacturing process. The overall performance of the QC system on surface inspection was 

acceptable. In all cases but one the system could identify the defects on the tested wafers. In the 
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large marker blob case, the system can be modified to account for it. Furthermore, the system’s 

lower inspection limitations were demonstrated. The system could identify dents as shallow as 

0.54 mm and holes as wide as 1.66 mm. Ultimately, the system could be used to automate 

inspection for many types of surface defects. 
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CHAPTER VI 

 

INDUSTRY CASE STUDY 

 

 A QC case study using the proposed QC system was conducted on industrial parts. The 

industrial parts inspected were provided by Regal Beloit, a global manufacturer of electric 

motors, and are metal discs stacked to create rotors for their electric motors (Figure 23). 

Ensuring each metal disc is dimensionally correct or within a low error tolerance is essential to 

having the rotor mechanically operate as desired. Regal Beloit requires the metal discs have an 

outer diameter between 119.863 mm to 119.913 mm, an inner diameter between 34.011 mm to 

34.036, and a slot length of 23.343 mm to 23.368 mm. A vision system is used by the company 

to perform dimensional inspections on sampled parts in the production line. The proposed QC 

system seeks to challenge the vision system used by Regal Beloit as well as offer surface 

inspections, capabilities of in-line inspections on all products, and remove the need for system 

training. In the following section the results achieved using the proposed QC system to inspect 

acceptable and defective discs will be described. Additionally, a section covering how the 

proposed QC system can be used in a production line with the provided industry parts is 

included. 
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Figure 23: Metal Industry Disc 

 

6.1- Industry Part Inspections 

 Adding defects for testing purposes to the few metal discs provided was not feasible. 

Therefore, to produce many discs containing unique defects, 3D printing offered the best 

alternative. Knowing the disc’s desired dimensional specifications allowed for a computer aided 

design to be generated of it and facilitated in adding defects for system testing. The dimensional 

design alterations made to the disc were on outer diameter, inner diameter, and slot length. Once 

the designs (acceptable and defective) were completed, prints of them were made using white 

PLA material. The surface defects added were manually created with the design goal of plausibly 

occurring in a production line (e.g., scratches and dents). 

 

6.1.1- Industry Parts Dimensional Analysis 

 The data used for dimensional analysis was collected from a base model disc fulfilling 

the desired dimensional specifications. 12 defect designs were created:  

• Larger Outer Diameter (LOD) of 5% 

• Larger Outer Diameter of 2% 

• Larger Inner Diameter (LID) of 5% 

• Larger Inner Diameter of 2% 
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• Longer Slots (LS) of 1 mm 

• Longer Slots of 0.5 mm 

• Shorter Slots (SS) of 1 mm 

• Shorter Slots of 0.5 mm 

• Smaller Outer Diameter (SOD) of 5% 

• Smaller Outer Diameter of 2% 

• Smaller Inner Diameter (SID) of 5% 

• Smaller Inner Diameter of 2% 

 
Figure 24: (left) Larger Outer Diameter 5%, (right) Smaller Inner Diameter 5% 

The results from the dimensional testing is provided in Appendix A. A likeness score of 1 

indicates an item is perfectly equal in perimeter, area, circularity, and rectangularity to a base 

item. All trials used the same light intensity, product type, and image resolution. The table 

columns are organized by trial, the base item and parameter values generated in that trial, the 

tested item and parameter values generated in that trial, and a likeness score. Each defective item 

had five trials performed for it. A statistical summary is provided in Table 11 on the dimensional 

analysis results. Measurements in millimeters were taken of the 3D printed discs using a digital 

caliper and are provided in Table 12. 
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Test 

Design 

Average 

Likeness Score 

Standard Deviation 

Likeness Score 

Max Likeness 

Score 

Min Likeness 

Score 

Original 0.9964 0.000548 0.997 0.996 

LOD 5% 0.9264 0.002302 0.929 0.924 

LOD 2% 0.9662 0.001924 0.968 0.963 

SOD 5% 0.9198 0.002168 0.922 0.917 

SOD 2% 0.963 0.001000 0.964 0.962 

LS 1 mm 0.995 0.001000 0.996 0.994 

LS 0.5 

mm 

0.9964 0.003131 0.999 0.991 

SS 0.5 

mm 

0.996 0.001581 0.998 0.994 

SS 1 mm 0.995 0.002000 0.997 0.993 

SID 2% 0.9944 0.000894 0.995 0.993 

SID 5% 0.9916 0.001140 0.993 0.99 

LID 5% 0.9866 0.002510 0.99 0.983 

LID 2% 0.9908 0.001483 0.993 0.989 

Table 12: Industry Disc Dimensional Analysis Statistics 

 

Part Outer Diameter (mm) Inner Diameter (mm) Slot Length (mm) 

Original 119.95 33.94 22.60 

SS 1mm 119.97 33.70 22.05 

SS 0.5mm 119.82 33.72 22.21 
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LS 0.5mm 119.76 33.77 22.82 

LS 1mm 119.81 33.82 23.19 

LID 2% 120.07 34.47 21.72 

LID 5% 119.83 35.55 21.54 

LOD 2% 122.18 33.75 21.72 

LOD 5% 125.69 33.72 21.61 

SID 5% 119.95 32.05 22.61 

SID 2% 119.91 33.21 22.72 

SOD 2% 117.65 33.87 23.14 

SOD 5% 113.65 33.96 22.63 

Table 13: Measurements of 3D Printed Discs 

The statistical results from Table 11 show the proposed MV system can detect millimeter 

level defects on products. The original-to-original trials (base compared to acceptable test) had a 

high average likeness score of 0.9964 and a standard deviation of 0.000548. The reason for the 

likeness score not being perfect is due to noise during image acquisition and minor errors 

occurring in producing the discs. 

The results from the larger and smaller outer diameter trials had the lowest likeness 

scores, which is expected because changing the outer diameter has a significant impact on 

perimeter and area for the discs. The smaller diameter of 5% and larger diameter of 5% have a 

nearly equal likeness score to each other as well as the smaller diameter of 2% and larger 

diameter of 2% to each other. This is due to the dimensional analysis algorithm taking the 

absolute difference between the base and test items. The likeness scores for outer diameter prove 

the proposed MV system can accurately detect defective discs with an outer diameter of 2 mm 
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less than or greater than the desired specification (Table 12 provides physical distance 

measurements).  

The results for the longer and shorter slots on the discs had likeness scores much closer 

on average to 1. It worth noting that although the slots were designed to be longer or shorter by a 

millimeter or half a millimeter, the printed slots defects were measured to be about half that 

(Table 12). The reason for the high likeness scores is due to the slot size changes only marginally 

affecting the disc area, circularity, and rectangularity. Future work will attempt to improve 

identifying these finer differences within an item by enhancing the image acquisition resolution 

and modifying the algorithm to better consider these defects. 

The results for the larger and shorter inner diameters were higher than desired and 

contained greater variability than the other defect types. Since only the outer perimeter of an item 

is measured, this significant parameter was not considered by the algorithm for the changed inner 

diameter. Future work will attempt to improve this lacking detection feature. 

 

6.1.2- Industry Parts Surface Analysis 

 As mentioned in chapter 5, the surface analysis performed by the proposed QC system 

does not compare test items to a base model. Three surface defects were added separately to 

industry discs: 1) dents created using a screwdriver, 2) scratches created using a box cutter, and 

3) black marks created using a marker. The results from the surface inspection on the industry 

discs is shown in Table 13. The image outputs from the blob analysis on the tested items are 

shown in Figures 25-27. 
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Trial Item Result Number of 

Detected 

Defects 

Expected 

Number of 

Defects 

Area of 

Predicted 

Base 

Area of 

Tested 

Item 

1 Disc Dents Defective 4 4 694434 691601 

2 Disc Dents Defective 4 4 694462 691847 

3 Disc 

Scratches 

Defective 2 2 793613 791160 

4 Disc 

Scratches 

Defective 2 2 793867 791559 

5 Disc 

Marks 

Defective 4 4 695684 693834 

6 Disc 

Marks 

Defective 4 4 695295 693431 

Table 14: Industry Discs Surface Results 

 

 
Figure 25: Industry Disc Surface Dents 



  

64 

 

 
Figure 26: Industry Disc Surface Scratches 

 
Figure 27: Industry Disc Surface Marks 

The results in Table 13 show that the QC system could correctly identify the defects on 

the discs at a 100% accuracy. Ultimately, the surface analysis proposed provides an additional 

inspection technique to ensure that QC is maintained in the production of these industrial discs. 

Adding surface analysis to the vision inspection already performed at Regal Beloit could prevent 

discs containing rust, holes, or bumps from being used in their electric motors. 

 

6.2- A Simulated Inspection Line 

 The practicality of the proposed QC system is demonstrated in this section through use in 

a possible production line inspection scenario. The scenario involves using the automated 
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inspection system to identify acceptable and defective industry discs considered in the previous 

section, and then based on the system output correctly transferring the discs to a location. The 

equipment used in this scenario is the QC system, a Dobot desktop robotic arm and two 

conveyor belts (Figure 28). The robotic arm is placed in front of the QC system rig and a 

conveyor belt is place on each side of the robotic arm. One conveyor belt moves discs needed for 

inspection within reach of the robotic arm. The robotic arm then uses its suction cup end-effector 

to lift and place the disc in the inspection area. The robotic arm moves out-of-view from the 

inspection area for the QC system to complete its tasks. Next, the robotic arm lifts the disc and 

places it on the other conveyor belt. Once on the conveyor belt, the disc will move one way if 

deemed acceptable by the system or move the other way if defective. The robotic arm was taught 

to move to specified points which is sufficient for the purpose of demonstrating the use of the 

QC system. 

 
Figure 28: Production Line Inspection Scenario 

Two tests were performed on the industry discs using the inspection scenario. In each test 

four discs were used, the base disc and three defective discs. The inspection begins with the base 

item since the dimensions of it are needed to judge test discs. The base item is automatically 
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moved by the second conveyor belt to the acceptable item’s direction. The other three discs 

containing either a dimensional defect, surface defect, or both are judged. If the item contains at 

least one defect, it is entirely labelled defective. Finally, to prove the system not only judges 

defective items correctly, the base item used in each test is put back on the conveyor belt for 

inspection. The results from both tests are shown in Table 14. A likeness score of 0.99 or greater 

is the accepted range for dimensional analysis. 

Test Defect Dim Analysis Likeness Score Surface Analysis 

1 1 mm SS and Marks Defective 0.986 Defective 

1 Original Dim and Bumps Acceptable 0.99 Defective 

1 Original Dim and Dents Acceptable 0.992 Defective 

1 Base Acceptable 0.997 Acceptable 

2 SOD 2% Defective 0.966 Acceptable 

2 SID 2% Defective 0.988 Acceptable 

2 LOD 5% and Cuts Defective 0.924 Defective 

2 Base Acceptable 0.998 Acceptable 

Table 15: Production Line Inspection Test Results 

The results in Table 14 show acceptable or defective (depending on whether it passed or 

failed a test) for each analysis on a test disc. All test discs correctly had their expected defects 

identified by the system. The disc containing slots 1 mm short and marks on its surface and the 

disc with an outer diameter larger by 5% and box cuts on its surface had both defects correctly 

identified. The remaining defective discs each had their respective defects correctly identified 

while otherwise being acceptable. The two base items inspected had both analyses deemed 

acceptable with high likeness scores. 
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Overall, the presented case study tests the capabilities of the proposed QC system to be 

applied on an industry case study. The dimensional analysis performed on the industry discs 

shows the QC system could identify extremely fine differences between discs and is a promising 

industrial alternative for this form of inspection. The surface analyses performed could identify 

all surface defects at a 100% accuracy, except for the large marker blob due to its size. 

Adjustments to the system’s parameters can be made to extend the range of identifiable defects. 

Lastly, the system was integrated in a production line scenario to demonstrate its automated 

capabilities. In each trial for each test the correct outputs were given regarding dimensional and 

surface analysis. The production line scenario also demonstrates that the small sized QC system 

can be added in existing production lines. This minimal volume system would replace the larger 

inspection machines currently used that are disconnected from the production line and requiring 

manual handling for inspection. 
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CHAPTER VII 

 

CONCLUSION 

 

7.1- Conclusion 

 QC will forever be present in a manufacturing world containing even the slightest 

possibility of error. Due to this ever-present problem, major advancements in QC have been 

made in industry to reduce cost and time needed for product inspections. QC systems using MV 

are presently a state-of-the-art technology allowing both cost and time to be driven down while 

operating accurately and precisely. The QC system proposed in this thesis offers a product 

inspection solution that meets the cost and time demands as well as offers improved adaptability, 

automation, and robustness in inspections. Recent literature on QC systems using MV offers a 

variety of dimensional and surface analysis solutions for varying applications. In this literature, 

most of the work uses ML to develop advanced recognition capabilities for a single item or small 

set. The proposed QC system builds on the literature by simultaneously performing dimensional 

and surface inspections without the need for model training. The results achieved in Chapter 4 on 

dimensional analysis demonstrated the system could identify diverse shapes that were simple or 

complex. Furthermore, the cube testing in Chapter 4.4 demonstrated the system could accurately 

identify millimeter differences. The results in Chapter 5 on surface analysis proved the system 

could determine whether surface defects were present and locate them. Although minor 

assumptions are made on the items and their possible defects, it was discussed that altering the 
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system’s setting could provide greater flexibility in item designs. All but one of the surface items 

inspected (large marker blob) had their defects located and outputted. Finally, the case study on 

the industry discs provided by Regal Beloit were converted to 3D printed plastic and altered to 

test the system’s performance. The proposed QC system offers solutions to the existing 

challenges in industrial QC, such as those faced by Regal Beloit, through the following benefits: 

dimensional analysis, surface analysis, high repeatability, automated inspection with no system 

training needed other than providing a base item, and in-line vision inspection. Ultimately, the 

proposed QC system provides an automated visual inspection using robust techniques for 

production lines. 

 

7.2- Future Work 

 The proposed QC system demonstrated accurate and precise visual inspection 

capabilities. However, improvements to the MV can be made to continue facilitating this form of 

QC and having its results more reliable. Allowing the system to operate properly in 

environments containing light other than from the system’s light source would further its 

practicality. By allowing the system to handle environments with varying light, opportunities 

arise for outdoor use. Additionally, improving the scale the system can detect at would allow for 

a greater range of inspectable items. In the case study presented, a very fine level of detail was 

required for inspection which the system’s results could have been improved by including. 

Allowing the QC system to inspect at the microscale range would allow for medical device 

equipment to be inspected. Next, the QC system only inspects two-dimensionally but if 

expanded to three-dimensions could provide a more comprehensive analysis of an item. Items 

that do not contain equal cross-sectional areas could be inspected and data such as item volume 
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could be collected. Improvements to the proposed algorithm should be made to better account for 

dimensional interior differences and to allow for a greater range of surface designs to be 

inspected. Ultimately, ML was commonly used in the literature survey conducted in Chapter 2. 

Adopting ML to the proposed QC system could allow for more informed decisions to the 

dimensional and surface analyses. For dimensional analysis, ML could provide output 

information on what about products is dimensionally defective. For surface analysis, ML could 

allow for categorization of defects, such as whether a defect is a dent or scratch. Convolutional 

neural networks (CNN) are a popular ML technique that applies the advantages of neural 

networks to image processing. Using CNN is as a ML technique to improve the performance of 

the proposed QC system will be explored in the future. 
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