4 research outputs found

    Statistical Learning in Automated Troubleshooting: Application to LTE Interference Mitigation

    Full text link
    This paper presents a method for automated healing as part of off-line automated troubleshooting. The method combines statistical learning with constraint optimization. The automated healing aims at locally optimizing radio resource management (RRM) or system parameters of cells with poor performance in an iterative manner. The statistical learning processes the data using Logistic Regression (LR) to extract closed form (functional) relations between Key Performance Indicators (KPIs) and Radio Resource Management (RRM) parameters. These functional relations are then processed by an optimization engine which proposes new parameter values. The advantage of the proposed formulation is the small number of iterations required by the automated healing method to converge, making it suitable for off-line implementation. The proposed method is applied to heal an Inter-Cell Interference Coordination (ICIC) process in a 3G Long Term Evolution (LTE) network which is based on soft-frequency reuse scheme. Numerical simulations illustrate the benefits of the proposed approach.Comment: IEEE Transactions On Vehicular Technology 2010 IEEE transactions on vehicular technolog

    Neuromorphic AI Empowered Root Cause Analysis of Faults in Emerging Networks

    Full text link
    Mobile cellular network operators spend nearly a quarter of their revenue on network maintenance and management. A significant portion of that budget is spent on resolving faults diagnosed in the system that disrupt or degrade cellular services. Historically, the operations to detect, diagnose and resolve issues were carried out by human experts. However, with diversifying cell types, increased complexity and growing cell density, this methodology is becoming less viable, both technically and financially. To cope with this problem, in recent years, research on self-healing solutions has gained significant momentum. One of the most desirable features of the self-healing paradigm is automated fault diagnosis. While several fault detection and diagnosis machine learning models have been proposed recently, these schemes have one common tenancy of relying on human expert contribution for fault diagnosis and prediction in one way or another. In this paper, we propose an AI-based fault diagnosis solution that offers a key step towards a completely automated self-healing system without requiring human expert input. The proposed solution leverages Random Forests classifier, Convolutional Neural Network and neuromorphic based deep learning model which uses RSRP map images of faults generated. We compare the performance of the proposed solution against state-of-the-art solution in literature that mostly use Naive Bayes models, while considering seven different fault types. Results show that neuromorphic computing model achieves high classification accuracy as compared to the other models even with relatively small training dat

    AI BASED FAULT DIAGNOSIS IN EMERGING CELLULAR NETWORKS

    Get PDF
    Mobile cellular network operators spend nearly a quarter of their revenue on network management and maintenance. A significant portion of that budget, is spent on resolving faults diagnosed in the system that degrade or disrupt cellular services. Historically, the operations to detect, diagnose and resolve issues were carried out by human experts. However, with growing cell density, diversifying cell types and increased complexity, this approach is becoming less and less viable, both technically and financially. To cope with this problem, research on self-healing solutions has gained significant momentum in recent years. One of the most desirable features of the selfhealing paradigm is automated fault diagnosis. While several fault detection and diagnosis machine learning models have been proposed recently, these schemes have one common tenancy. They still rely on human expert contribution for fault diagnosis and prediction in one way or another. In this paper, we propose an AI-based fault diagnosis solution that offers a key step forward towards a completely automated self-healing system without requiring human expert input. The proposed solution leverages neuromorphic computing which uses RSRP map images of faults generated. We compare the performance of theproposedsolutionagainststateoftheartsolutioninliterature that mostly use Naive Bayes models, while considering seven different fault types. Results show that the neuromorphic model achieves high classification accuracy as compared to Random Forests classifier, Convolutional Neural Networks and Naive Bayes even with relatively small training data

    Probabilistic Modeling of Process Systems with Application to Risk Assessment and Fault Detection

    Get PDF
    Three new methods of joint probability estimation (modeling), a maximum-likelihood maximum-entropy method, a constrained maximum-entropy method, and a copula-based method called the rolling pin (RP) method, were developed. Compared to many existing probabilistic modeling methods such as Bayesian networks and copulas, the developed methods yield models that have better performance in terms of flexibility, interpretability and computational tractability. These methods can be used readily to model process systems and perform risk analysis and fault detection at steady state conditions, and can be coupled with appropriate mathematical tools to develop dynamic probabilistic models. Also, a method of performing probabilistic inference using RP-estimated joint probability distributions was introduced; this method is superior to Bayesian networks in several aspects. The RP method was also applied successfully to identify regression models that have high level of flexibility and are appealing in terms of computational costs.Ph.D., Chemical Engineering -- Drexel University, 201
    corecore