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Abstract 

 

Three new methods of joint probability estimation (modeling), a maximum-likelihood 

maximum-entropy method, a constrained maximum-entropy method, and a copula-based 

method called the rolling pin (RP) method, were developed. Compared to many existing 

probabilistic modeling methods such as Bayesian networks and copulas, the developed 

methods yield models that have better performance in terms of flexibility, interpretability 

and computational tractability. These methods can be used readily to model process 

systems and perform risk analysis and fault detection at steady state conditions, and can 

be coupled with appropriate mathematical tools to develop dynamic probabilistic models. 

Also, a method of performing probabilistic inference using RP-estimated joint probability 

distributions was introduced; this method is superior to Bayesian networks in several 

aspects. The RP method was also applied successfully to identify regression models that 

have high level of flexibility and are appealing in terms of computational costs.  
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Chapter 1: Background 

 

1.1. Introduction 

Successful management of industrial processes needs adequate information and wise 

judgment. Today, the necessity of evaluating frequencies and consequences of hazardous 

accidents is becoming one the most attractive fields in the process engineering, along 

which legislators are placing an increasing stress on the control of the strength of risky 

events. Various process risk analysis techniques have been developed over the last 

decade to equip decision makers with tools to estimate the impacts of undesired events on 

the personnel, economic matters, society and the environment. The availability of 

technical background and information resources to perform the analysis is the primary 

constraint on the completeness of risk assessment. Managers must consider the value of 

risk analysis results in their decision making to reduce the intensity of probable accidents.  

1.2. Stochastic Modeling of Operational Risks 

Operational risks are those events imposing a loss to an operating system mainly due to 

failures in internal process or anomalies applied by external environment. These failures 

are usually a result of gradual depraving processes, finally leading to an intolerance point, 

beyond which the system cannot continue its routine function. Although in most cases 

these risks give rise to small to medium scale losses, but there is always a potential 

danger of a single faulty operation, through certain chain or cascade interactions, 

undergoes a “snowball” effect eventually resulting in an irrecoverable catastrophic event 

or calamity.
1 
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Since real-world systems, especially those with many variables or components, 

bear a large degree of uncertainty in them, as far as the observer’s “epistemic” knowledge 

about the system could reach, traditional deterministic models fail to depict the system 

and the manner it really behaves properly. Deterministic models, for many reasons, are 

only good approximations sufficient to describe systems under certain simplified 

conditions with point estimates, i.e. without providing information on how uncertain the 

result is. The first of such reasons is that deterministic models which are constructed on 

physical laws are supposedly reflecting the same variables which are considered 

noteworthy from the viewpoint of the scientist or engineer. That gives rise to a model 

lacking many sources of information disregarded unintentionally or deliberately for the 

sake of feasibility of computations.
2
 Furthermore, in addition to variables omitted from 

the model as mentioned above, there are variables that can barely be taken into account in 

a deterministic model and are actually almost uncontrollable. These variables, 

introducing an “aleatory” uncertainty to the model, are also known as noises or 

disturbances. Finally, we have to rely on sensors which are intermediates between us and 

measurable quantities, providing us with the only immediately discernible information 

from the reality. Sensors, on the other side, carry uncertainties in terms of their bias and 

variance, making the corresponding deterministic model parameters and outcomes less 

trustworthy and dignified than they have displayed so far.
3-5 

All these facts suggest that in order to model such a complex entity as risk 

represented by a multivariate system, there should be introduced a comprehensive 

stochastic framework to allow for different sources of uncertainty being incorporated and 
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employed to generate more reality-consistent results. The rest of this document is 

dedicated to proposing such a model and introducing its features. 

1.3. Rare Event Probability Estimation 

Risk assessment is usually referred to as a set of actions implemented to evaluate risk 

distribution over the components of a system.
6
 Resulting analysis then will be used as an 

input to risk management strategies utilized to mitigate or remove risks to which a 

complex system is exposed. This process is directly connected to estimate the likelihood 

of different possible risky situation scenarios that could happen for the system and their 

associated costs. To this end, risk assessment must overcome multiple obstacles 

simultaneously, many of them have received much more attention within the past 

decades.
7 

Most of the efforts done to estimate risks have focused on those abnormal 

situations with higher probabilities and moderate costs, whereas the major part of 

catastrophic and large scale incidents imposing highly destructive consequences to a 

system are caused by some triggering events whose probabilities have been considered 

infinitesimal when performing the risk assessment procedure. This class of abnormal 

events are usually referred to as “rare events” and categorized into two major groups: 

those which are such rare and far-fetched that their probabilities may be considered to be 

practically zero
8
; e.g. industrial plant destruction due to a meteor colliding exactly with 

the plant site, and those that are actually predictable, but showing a minor recurrence 

frequency compared to the system’s expected lifetime; e.g. control system failure. 

Throughout this text we use the term “rare events” for the latter type.
9 
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Although the second type of events mentioned above is predictable and its 

consequence can be well avoided, even modern day industrial establishments are still 

suffering from the resulting catastrophes.
10-12

 Two major reasons underlie such disastrous 

consequences. First and apparently main cause is that the probability of those so called 

rare events is usually underestimated intentionally or inadvertently. That 

misunderstanding eventually leads to a common thought that corresponding risk values 

are negligible as well. Therefore, according to such a perception the associated risks 

simply taken not very seriously and specified with minimum degree of precautionary 

schemes. Another major reason, on the other hand, is the fact that estimating the 

probabilities of events that have seldom or never happened, observed or recorded in the 

course of system’s operation carries a great deal of  uncertainty in its outcome, mainly 

because a general framework integrating between the rarity of sample realizations and 

their generalizability to the future has not been introduced yet and as a result point 

estimates presented by the mentioned methods are hardly applicable to an actual 

operating system. Hence the problem is to estimate probability values that are unknown, 

infinitesimally small and hard to predict, which in most cases tend to be ignored. 

Timely performing a thorough risk assessment procedure is literally crucial to 

prevent any future large-impact incident, making it not only lifesaving but only a 

profitable task.  

As a key element of risk assessment, rare event probability estimation can be 

applied in two different phases of a complex system undergoing development. 

Sometimes, particularly when we are dealing with small to average scale settings not 

including intricate interactions, it is more convenient to evaluate risks in the design or 
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pre-production stages. However, this is not the preferred solution in cases where the 

system is supposed to involve a large number of interconnected field variables with 

probably hidden or unknown ones and subjected to stochasticity highly incorporated in 

forming the system’s behavioral nature. So, oftentimes risk assessment is implemented 

over the systems that are already existing and working.
13,14

 This is mainly because the 

signicance of risk assessment has not been known to many until recently, or the 

mathematical tools required as an infrastructure to the modeling step were not available. 

More importantly, computational power and software backbone needed for huge 

numerical calculations of complicated mathematical models have become widely 

accessible only in the past couple of decades. Another reason, from which our proposed 

research receives a considerable incentive, is the fact that the best way of characterizing a 

system’s future behavior is to construct the predicting models based upon information 

from the recorded historical past.   

After a historical database reflecting the previous trends of the system becomes 

available, some further important steps should be taken toward the complete risk 

determination.
15 

To reconstruct a full profile of the likelihood of any specific variable taking a 

predetermined value or occupying some certain state, there should exist a model to get 

trained by the available dataset. This model can either stem from the fundamental 

physicochemical rules governing the system’s behavior and derived by differential 

conservation laws, or get developed based upon techniques suggested by statistical 

analysis. It is claimed here that for some reasons, in the context of risk assessment 

statistical models are superior to any other class of models. Firstly, they can be 
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established in a much shorter time than a regular systematic formulating of 

astronomically large number of conservation equations could take, probably without 

requiring much knowledge about the underlying actual mechanisms. Moreover, they are 

capable of incorporating uncertainties appearing in the data with minimum level of 

artificial assumptions. Finally, inference over different fault scenarios is performed 

instantly compared to that of large systems of coupled equations describing a system 

using differential conservation laws.  

Many traditional statistical learning approaches, on the other hand, are susceptible 

to the quality of the data provided: large historical datasets may contain information 

differing from the current state of the system. This situation happens since large scale and 

complex systems are continuously subject to changes. For example, replacing a process 

component with an upgraded one can render the failure profile of the older piece partly 

useless. On the other side small historical datasets may not contain adequate information 

required to accurately estimate probabilities.
16 

According to the above facts, statistical risk models are specifically attractive in 

addressing rare probability estimation when a reliable first-principles model is not 

available, or creating such a model is not feasible at least with limited budget or time. 

Even though a reliable first-principle model is attainable, picking up an adequately large 

sample size where all possible instantiation of the variables, including those of rare 

events, are reflected takes much longer time than needed for performing similar 

calculations in statistical models to derive the corresponding probabilities. Indeed, many 

of the widely used approaches to rare event probability estimation follow sampling 

formalisms, for which the essential factor is the presence of a more or less reliable 
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mathematical model containing epistemic and aleatory uncertainties existing in a 

different level of interactions between the field variables.
17-21 

1.4. Bayesian Networks  

Since introducing the tractable probabilistic inference rules
22,23

, Bayesian networks have 

monopolized attentions in the context of stochastic modeling of highly complex systems. 

A Bayesian network is constituted of two basic parts: 1) directed acyclic graph 

representing the cause and effect interrelationship between variables and 2) probability 

values, quantifying the causal links, by relating the probability distribution of each 

variable (node) to its parents’ probability distribution laws. Discretized Bayesian 

networks can effectively handle different types of variables (continuous or discrete) and 

present updated probabilities almost at once when new evidences are given. This task is 

called “inference” in the context of Bayesian statistics.
24-27 

Central to Bayesian networks inference engine is the Bayes’ rule, allowing one to update 

beliefs about correlated random variables once getting informed about the state of some 

of them 

                                                           
          

    
 (1.1) 

where        and        denote the likelihood and conditional probabilities of event A 

given event B. In Bayesian terminology cause is called a parent and effect is its child. 

Different children can share a common cause, and a cause may have multiple children. 

To work properly, Bayesian network topological structure (graph) and probability values 

must be well established. Developing the Bayesian network’s structure is mostly done 

using the previous knowledge coming from information about the real-world system 
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being modeled. However, systematically learning the structure from the data is a rapidly 

growing area.
28,29

 Estimating prior and conditional probabilities, on the other hand, is to 

great extent dependent on the data. This stage is usually referred to as parameter 

learning. 

As we remarked earlier in previous sections, many actual systems tend to take on 

certain states more frequently. This behavior, which particularly holds for systems under 

control, reveals a quality in which the system represents probability distributions with 

only a few modes. Whenever the variance of the said distribution becomes smaller, a 

narrower distribution is yielded. In such cases, the probability of observing a sample far 

from the mean of the distribution dramatically shrinks by the Chebyshev's inequality.
30

 If 

parameter learning of Bayesian networks is intended, with limited number of samples, 

inadequate information is often obtained for the states or events with probabilities lower 

than some thresholds dictated by the number of samples. This phenomenon is the same 

“rare event” situation revisited here for the Bayesian networks. Consequently, more 

samples should be taken from the system to make sure the historical dataset includes 

information on the states with small probabilities; otherwise proper learning and 

inference over the unobserved regions become impossible. The situation gets even more 

severe when one is looking for data to estimate conditional probabilities of extreme 

values of a child variable given extreme values of its parents (compound risk situation). 

Despite of the fact that in general finding a solution to the rare probability 

estimation could be problematic, fortunately there was a hope to find an acceptably 

accurate result for industrial systems with which Bayesian networks are concerned in the 

current research. Insofar as the target variables to be modeled are numerical and 
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continuous, their associated rare event equivalently implies the extreme values. That is; 

since in most cases, continuous variables of interest (temperature, flow rate, etc.) are to 

be controlled at some specific design values, the extreme values far from these set points 

are considered to be unwanted. As a result, the probability of such an extreme states 

converges to zero, where the rarity usually emanates. Therefore, within our framework of 

interest where rare events of continuous entities can be interpreted as extreme values, rare 

events are no longer unknown. Such rare events are metaphorically called “grey swans”. 

The difference of grey swan with the so called “black swan” event is that the former is a 

predictable event, but with unknown probability. Knowing the facts above, we will be 

able to propose a methodology consolidating our decentralized knowledge.  

In the current work we propose a rigorous mathematical modeling technique 

based on established fundamental laws of probability, statistics and information theory to 

estimate probability distributions of continuous multivariate random variables from an 

optimal probability density. This density unifies information coming from every 

individual sample points and provides a framework for maximum use of information 

encoded in the data. Unlike traditional approaches to Bayesian network parameter 

estimation using the local relative frequency technique to estimate probabilities; our 

improved method incorporates all information presented by finite datasets to set up a 

unique multivariate probability density function extendable to unobserved regions. Using 

such a density, not only calculating unknown and near-zero conditional probabilities 

becomes possible, but also it will be carried out much faster than sampling techniques. 

Thereafter, our enhanced Bayesian networks would be capable of performing inference 

over the regions which are recognized by the data itself. 
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1.5. Bayesian Networks for Risk Assessment and Fault Detection 

Causal models in general and our equipped Bayesian networks in particular can be 

effectively exploited to construct probabilistic models to determine operational risk 

within industrial systems. By introducing a framework to estimate the system’s overall 

status given its input, such a model is capable of calculating the corresponding deviations 

and unfavorable events likelihoods, guiding to detect system’s weak points and 

vulnerabilities. This valuable information will further be utilized to calculate risks, in 

combination with related loss severity and costs. This model also enables us to assess the 

existing risk controllability, e.g. controllers’ robustness.  Prior probabilities of the root 

variables and their behavior, on the other hand, have also much to say about which input 

parameters, whether internal or external, are more probable to impose risks to the system.   

In this regard, Bayesian networks can be comparable to traditional risk assessment 

procedures, e.g. performance indicators, score cards, etc.
31

 In addition to training from 

the historical data, Bayesian networks take the advantage of ability to bind different 

sources of information, such as expert knowledge. The outcome of this type of analyses 

will further conduce to large mitigation in risks via risk management formalities. 

Another significant application of Bayesian modeling of industrial processes is 

fault detection.
32

 Fault detection can be performed either real-time (online analysis) or as 

a tool to figure out the most probable reasons of an already happened accident in order to 

diagnose and prevent similar future events. Although by adding any evidence to the 

network the whole network gets updated, but two kind of different studies can be done 

over the updated network simultaneously. If one is interested in how the effect nodes of 

the given evidence differ from their prior probabilities, the inference called “predictive”. 
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On the other hand, if the ways by which the cause nodes of the given evidence deviate 

from their prior state are matter of interest, the inference called “diagnostic”. 

Finally, the Bayesian methodology furnishes risk evaluation, as well as 

additionally empowering incorporation of different types of information, where 

quantified data and subjective knowledge meet each other. This can result some 

outstandingly influential achievements not conceivable by alternative methods. This 

extent of profits, along with the unequivocal assessment of stochasticity and capability to 

convey the outcomes effortlessly and graphically to users, renders Bayesian networks a 

unique solution for risk determination under uncertainty.
33 

1.6. Bayesian Network Structure Learning from Data 

In many industrial applications, such as risk and failure modeling, there is an urgent need 

for discovering cause and effect relationships among the domain variables.
34

 Number of 

variables under study and the state of the knowledge of the model builder strongly affect 

the quality of the model. When the internal mechanisms are not fully understood, 

traditional methods of finding this causal structure by the expert knowledge may lead to 

poor or even misleading outcomes. Because of the importance of relationships in 

characterizing complex systems, automatic data-driven approaches have received more 

attention in recent years.
35,36

  

When comes to BNs, the above issue is translated into learning BN topological 

structure, or DAG, which encodes the conditional dependencies amongst nodes. Besides 

plenty of hybrid and heuristic methods
37- 39

, there are two major classes of data-driven 

BN structure learning strategies:  (1) score and search, which searches for the structure 
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maximizing an objective function;
40,41

 and (2) conditional independence (CI) tests like 2
,  

which involves accepting or rejecting pairwise independence hypotheses.
42,43 

 

Despite advances made in this area, some major problems still persist. First, 

search through a large possible structure space, despite huge computational improvement 

in the past decade, still takes considerable computational time, which exponentially 

increases with number of nodes of the model. Second, conditional independence tests 

often perform poorly in capturing complex dependencies or at their best give an 

undirected version of the underlying network’s graph.
44

 In addition, the available 

methods are susceptible to scarce data sets. 

In view of these, there is an increasing demand for a practical method that can 

automatically produce BN causal structures from data using simplifying assumptions or 

new analytical approaches. Such a method not only provides the BN calculation with a 

strong explanatory backbone, but also provides the researchers with a better 

understanding of complex and large-scale phenomena encountered in real world.  

Therefore, finding the causal model which describes the observed data becomes 

an optimization problem, with exponentially increasing in the number of candidates with 

respect to size of the variable set. In view of this, and since conditional independence 

tests cannot theoretically determine directed causal relationship, an efficient search-based 

algorithm must be developed such that it will be able to explore the search space in 

minimum possible time. Such capability sounds more critical if we consider the fact that 

the major complexity of finding the optimal Bayesian network structure via search 

methods arises due to estimating the goodness of fit measure (search score) for every 

candidate being studied by the search algorithm. This process which plays an important 
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role in the final result of the optimization process, renders increasingly time consuming 

with the number of nodes included. That means, if an appropriate strategy is not selected 

to pick up samples from the search space, most of the computational power will be 

wasted on redundant cases.  

To address this problem, it seems necessary to develop methods to constrain the 

search space to a hyperspace polytope of best featured candidates. This task would be 

more feasible if a convenient way is introduced to map the space of DAG to an 

equivalent space of encoded entities with respect to the nature of the systems being 

studied (trees, polytrees, densely connected, etc.). A possible solution to this problem can 

be using CI test to establish such constraints by specifying equivalent classes of 

undirected graphs representing the conditional dependence among the domain variables. 

However, such a technique should be carefully developed for the cases where overly 

connected, dynamic Bayesian networks (DBNs) or recursive causality has to be dealt 

with.   

Another important improvement to the available search-based methods is to 

develop new scores for the optimization. As mentioned before, since a significant amount 

of computational capacity is committed to considering unlikely candidate graphs, the 

need for a metric that can unwind this burden is highlighted. In other words, the selected 

metric’s ease of calculation expedites the entire arithmetic operations. On the other hand, 

an efficient score function is required to recognized between more probable nominated 

samples with less suitable ones more profoundly; that is, implausible samples should be 

scored such that the similar configurations instantly get penalized by the algorithm by 

leaving the associated neighborhood.  
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Finally, oftentimes when optimizing traditional score functions over the assumed 

sample space multiple optima may be observed, where all of which, except the global 

optimum one, are local optima and not indicating the true structure of the observed  

multivariate data. A solution to this problem can be achieved by adopting an appropriate 

global optimization technique, such as evolutionary optimization (genetic algorithm) or 

swarm intelligence (particle swarm optimization). Again defining a heuristic score 

function or transforming the search space into equivalent sets based upon the type of the 

space being explored may be useful to address the problem of existence of multiple local 

optima. 

1.7. Dynamic Bayesian Networks  

Cyclic causality happens when one variable simultaneously affects and is affected by 

another node in a causal network, or a set of subsequent arrows starting from one node 

finally ends to the same node. This situation usually observed in process industries, when 

control loops are present or thermo-sensitive reactions are present. Such a causal 

relationship is not supported by traditional Bayesian network update rules.
45

 Although 

there have recently appeared works on developing cyclic causal network, but their 

applications are still limited to certain cases. Furthermore, industrial processes usually 

undergo transient behavior; they move towards or away from a steady state or operate 

around a steady state.  In modeling such processes, time has to be taken into account.  

To resolve these problems we propose applying  Dynamic Bayesian networks (DBNs) as 

they allows one to eliminate cyclic causality as well as modeling time dependent 

phenomena. In BNs this feature is added by considering different time-step nodes for 

each individual time-varying node.
45

 In addition to regular conditional probabilities that 
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quantify the uncertain interactions of two different variables, this model relates current 

state of transient nodes to their immediate past or even more steps deep into their 

historical behavior.
46,47

 This extension will allow us to capture the most probable causes 

for observed evidences in transient operation mode, which is an essential step in real-time 

process monitoring and fault detection. This interpretation of the cyclic causality is in 

special compliance with understating of the nature’s laws. In most real-world systems, 

when two objects are in cyclic interaction (where the first objects affects the other and 

vice versa), this effect is not immediate, since no message can be transmitted faster that 

the speed of light. Therefore when the second object receives this action sent at moment 

(ti) it is at another time instant, say (ti+1), and the reaction reaches the first object at 

moment (ti+2) and so forth. Hence a cyclic behavior is actually consecutive messages 

being sent to one object from its partner in a previous time step and cycles can be 

decomposed using this fact (Figure 1.1).  

An important barrier which is revisited here is to infer the DBN causal structure 

from observational data. Like static BNs, the amount of information encoded in 

observational data takes an important role in success of the structure learning scheme. 

However in many actual systems, this information which is carried by time series data 

don’t includes all possible abnormal events. A probable solution for lab to pilot plant 

scale systems is to use active learning procedure, in which system inputs are manipulated 

by being taken to certain abnormal states and then corresponding systemic response 

recorded and employed to give a better view to the system’s behavior. Definitely active 

learning is not applicable for large scale industrial systems; as taking the variables close 

to extreme events is not allowed by different criteria dictated by system’s design, 
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operational and safety guidelines. Therefore this research is going to focus on capturing 

the DBN causal structure from bounded time series data. To this end, we are going to use 

some intermediate modeling environments such as Markov chains, and in a long run, 

sufficient number of samples are provided to feed into the structure learning algorithms.  

As mentioned above, unlike static BNs, in DBNs some nodes are specified to link 

the current or future state of the variables to their past. The manner by which the current 

system is being affected by its past and the extent to which these messages are effective 

(long range time dependence) is also a critical issue in designing DBNs, particularly for 

the industrial systems containing innumerable complicated and in many cases, unknown 

interactions. To discern such phenomena some indices must be developed (e.g. by 

generalizing available measures like Hurst’s exponent). All the above efforts have as well 

to be generalized in the proposed research to DBNs which aim at modeling recursive 

causality, as it imposes extra complexity due to ambiguous demonstration of such 

relationships in the observational sample data, otherwise a circular causality may 

mistakenly be recognized as a one way regular effect and vice versa.
48 

Finally for cases of tightly controlled systems (as can be usually found in 

industry), we will consider the possibility of developing DBNs from regular BNs and its 

impact on the quality and performance of the achieved models.  
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Figure 1. 1: Cyclic causality decomposition using DBN with two time increments. 

1.8. Large-Scale BN Inference 

Real world systems have hundreds or thousands of variables; because BNs of these 

systems have hundreds or thousands of nodes, inference using such large-scale networks 

is computationally infeasible at the present time, especially when real-time network 

updating and inference are desired.    

In BN modeling when the number of variables (nodes) grows, the first problem 

appears when automatic data-driven structure learning is intended. Learning BN structure 

has been proven to be NP-hard
49,50

, in the sense that number of possible directed acyclic 

graphs (DAGs) available in the place of candidates for the true underlying network grows 

astronomically as the number of variables increases.
51

 Furthermore, the presence of more 

variables in the BN model leads to more intricate and hard-to capture interactions whose 

discovery is a difficult task both manually and automatically. A similar complexity exists 

when structure discovery is carried out by independence tests
52,53

, where much more 

pairwise-conditional-independence assessments must be made for larger BNs. This 

problem becomes even more difficult when the database is scarce.  
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Once the network topology is established, available data is used to estimate 

conditional probabilities. Larger number of nodes and dense networks can significantly 

slow down the parameter estimation step, due in large part to higher number of 

calculations needed to classify the observed data over the assigned states, particularly 

when a streaming input of data must be processed in real-time to update the network’s 

parameters. This problem further magnifies when data is scarce, as the data required to 

describe probabilities of combinatorial extreme states of a cluster of parent nodes and 

their child become less available, and leads to incomplete conditional probability tables.  

The most severe condition imposed by large BNs is associated with Bayesian inference. 

Even though the network consists of discrete nodes rather than continuous variables, 

Bayesian inference is still considered as an NP-hard problem.
54

 Despite great deal of 

work in the literature
55

 on the Bayesian inference problem, there is no general method to 

update probabilities given new evidences in polynomial time. More complexity is faced 

when the network moves away from sparse configurations, in which case number of 

states increases or conditional probabilities becomes incomplete.  

All of the above challenges seem more severe when viewed from the real-time 

inference stand point, which is essential for fault detection and process monitoring roles 

of the BNs. To address this problem, the existence of an integrated framework is critical 

in modern day application. More attention must be focused on “anytime” algorithms
56-59

, 

which incrementally and iteratively present more accurate solutions for the updated 

network. As an alternative resolution, since no single algorithm can handle all kinds of 

possible BNs, as stated by No Free Lunch (NFL) theory
60,61

, a library consisting of the 

most efficient available methods can be developed as a toolbox to work with any sort of 
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BNs according to their type. Finally, approximate solutions can be employed to simplify 

large BNs by doing local inference, variable elimination, stochastic samplings, node 

reduction, state merging and so on, based on the type of the network being dealt with, to 

get around the problems caused by large scale Bayesian networks. The performance of 

these techniques can be improved significantly if meta-level reasoning is utilized to 

explore the space of the candidate methods and characterize the best possible 

solution
62,63

. 

To address multiple inference challenges arisen by large BNs, a unifying 

framework consisting of solutions to different possible network complexity levels is 

proposed. As mentioned earlier, depending on the size of the causal network being 

analyzed, its density, number of states of each node, the purpose of inference (real-time 

computations or offline studies), etc., an appropriate inference technique is present in the 

proposed framework. If enough random samples are already produced before an 

abnormal situation is met, approximate inference methods are superior over the exact 

algorithm. On the other side, anytime algorithms start with approximate solutions to 

satisfy some urgent real-time inference needs and gradually give more accurate results as 

time goes by. These stepwise approximations apply to the network structure 

simplifications, reduced number of samples used to perform approximate inference, 

minimized number of states and so on. On the other hand, heuristic solutions are to be 

developed to perform Bayesian inference locally; that is, given a set of evidences, the 

computational power is intelligently spent on updating those parts of the network which 

are most likely to have resulted in the observed evidences without needing to redundantly 

update the entire network. Finally, an optimization scheme can be exploited to discretize 
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the variables within the network considering the traditional objective functions 

(maximum entropy principle, maximum consistency, etc.) together with considering the 

cost of Bayesian inference computations when constructing the network to achieve 

minimal possible inference time. Developing new local message passing algorithms, 

developing novel measures for structure decomposition to equivalent set of polytrees and 

performing stepwise inference algorithm on them, and developing new measure for 

selecting optimal subset of nodes required to speed up the Bayesian inference based upon 

the location where the evidence is introduced to the network, demand received from the 

user about the nodes of interest and the variables experiencing maximum deviation from 

their normal values are under active research. 
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Chapter 2: Maximum‐Likelihood Maximum‐Entropy Constrained Probability 

Density Function Estimation for Prediction of Rare Events 

 

2.1. Introduction 

Fault detection and risk assessment are of great importance in the process industries. 

These analyses allow one to detect and quantify risk-prone spots within a processing 

plant and then mitigate or eliminate risks to the plant.
1
 Tools such as support vector 

machines,
2
 causal dependency,

3
 fuzzy logic,

4
 event trees,

5
 filter-based methods,

6
 

improved kernel component analysis,
7
 and Bayesian networks

8
 have been successfully 

applied to conduct probabilistic inference, sensitivity analysis, and detection and isolation 

of most probable causes of abnormal events. Methods have also been developed for fault 

detection and isolation under nonlinear closed-loop process conditions. In these methods, 

various statistical tests along with control system reconfiguration have been utilized to 

identify deviations and take proper control actions to mitigate the risk of such 

abnormalities.
9,10 

Calculating risk (probability of an abnormal event times the severity of the 

consequences of the event) in a processing plant whose database has no historical 

information on the abnormal event is a major challenge in risk prediction. This 

incompleteness of plant information can be due to the plant data having been collected 

during time intervals when no abnormal event occurred, or the plant having been 

controlled so tightly that its variables never entered into “unsafe” ranges. The severity of 

the problem of addressing this data incompleteness increases significantly when no first-

principles model of the plant is available. The problem of estimating the probability of an 
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abnormal event whose occurrence has never been recorded is often referred to as "rare 

event" probability estimation.
11

 

There are two major rare-event probability estimation problems. The more 

common and easier one deals with the estimation of marginal distributions of 

independent variables. Many approaches have been suggested to address this 

problem.
12,13,14

  On the other hand, the estimation of conditional probabilities of 

dependent variables is more complicated.  To address this, one needs to calculate joint 

(multivariate) probability densities as well as marginal densities.  Joint probability 

densities describe the dependence of effect variables (child nodes) on cause variables 

(parent nodes) probabilistically. 

 Most rare-event probability estimation methods are based on sampling.
15,16

 These 

methods estimate rare-event probabilities by drawing large numbers of samples from 

appropriate models describing target systems. There are many variants of such methods 

for different types of underlying models. Monte-Carlo (MC) sampling is the core of many 

of these methods.
17,18

 To address the slow convergence rate of traditional MC methods, 

modified versions of random samplings have been proposed. Importance sampling uses a 

change of measure, takes samples from an alternative distribution, and maps the outcome 

to the original space.
19,20,21

 Splitting methods divide the range of each random variable 

into intervals and use random walk to generate rare-event missing data.
22,23

 Finally, 

Markov-chain Monte-Carlo methods are those utilizing Markov chains to produce a 

random walk.
24,25

 

 Although the sampling techniques have shown good performance in many 

applications, they have drawbacks that have prevented their widespread use. One 
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drawback is that simulation of infinitesimal probabilities using these methods takes very 

long times in practice;
26,27

calculation of a probability as small as      on a computer 

generating one sample every millisecond can take more than 30 years using standard 

Monte-Carlo simulations. Another drawback is that they can be used only when a model 

exists. In other words, every sample is the outcome of a computational process that needs 

a model. In the absence of a reliable model, when only data are available, probability 

density function (PDF) estimation methods are useful to model the behavior of a 

stochastic system.
13

 PDF estimation has its own variants, divided into parametric
28

 and 

non-parametric types.
29

 As shown in this chapter, despite many appealing features of 

existing PDF estimation methods, these methods are not general enough to address all 

rare-event probability estimation problems. Existing multivariate PDF estimation 

methods are unable to provide acceptable estimates in all regions where no data have 

been observed, especially when the relations among the field variables are non-

monotonic.   

In this work, a method of estimating multivariate PDFs that have maximum 

entropy (ME) and maximum likelihood (ML) is presented. As shown herein, although 

this method provides continuous probability distributions for continuous random 

variables, it can be extended easily to discrete random variables. To derive such a PDF, 

PDFs that maximize entropy
30

 and likelihood
31

 simultaneously are sought. Therefore, 

herein, this method is referred to as a maximum-likelihood, maximum-entropy (MLME) 

method of PDF estimation. The method uses information available in historical datasets 

to estimate a global probability rule applicable to all regions of each random variable 

domain. Another advantage over existing parametric and non-parametric methods is that 
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this method allows for effectively considering higher moments of each random variable 

(e.g., skewness and kurtosis). 

The rest of the chapter is organized as follows. The problem of estimating the 

probability of rare events within the framework of Bayesian networks is stated, and its 

significance is shown using a simple example in the next section. Some preliminaries are 

then presented, followed by the MLME PDF estimation method. The method is then 

applied to two examples, and its performance is discussed and compared with those of 

several widely used PDF estimation techniques.  Finally, conclusions are drawn. 

2.2. Problem Statement 

In this section, a very simple example is considered to describe the rare-event probability 

estimation problem and show the importance of the problem solution in Bayesian 

network inference. The example involves two variables,   and  , where Z depends on  .  

Throughout this chapter, each random variable is denoted by a capital letter and its 

numerical value denoted by a lower-case letter. Random variables are assumed to have 5 

states: Low-Low (               ), Low (              ), Normal (      

        ), High (              ), High-High (               ), where   

and   are real numbers, which can be the sample mean and standard deviation, 

respectively.  

Bayesian networks (BNs) are directed acyclic graphs, which have been used 

extensively for probabilistic modeling, especially after Spiegelhalter
32

 proposed 

algorithms that made probabilistic inference computationally tractable. BNs can account 

for the intrinsic uncertainties hidden in historical data without viewing uncertainties as 
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noise. They are very flexible in terms of training information; they can be trained using 

many types of data such as historical data, data from simulated first-principles, empirical 

and/or probabilistic process models, expert knowledge, discrete data, categorical data, 

continuous data, and incomplete/censored data, or a combination of these.
33

 BNs require 

training information in every state of each variable; in the case that historical data is the 

only information from a process, the historical data should include data in every state of 

each variable. 

Bayesian networks rely on training information to construct prior and conditional 

probability distributions.
34,35

 These probability distributions are building blocks of the 

network and are necessary for performing inference.
36

 If the distributions are estimated 

solely based on the maximum likelihood principle, then the frequentists approach
37

 

should be employed. In this case, the probability of the variable   being in a state     is 

defined as the relative recurrence of the random variable   visiting the state    : 

                                            
       

        
 
   

      (2.1)   

 and the conditional probability of the variable   being in a state    given the variable   in 

a state    is defined as: 

                                             
            

       
                                    (2.2) 

where   denotes the number (frequency) of observed samples within a specified state. 

Assume for the example under consideration frequencies of observed samples are those 

given in Table 2.1. Note that in some states no data have been observed. According to 

Eqs. (2.1) and (2.2), the probabilities of   and   being in these “null” states are zero. 

However, in most cases this situation occurs due to small sample sizes and near-zero (but 

not necessarily zero) probabilities. For this reason, these events are called “rare events”.  
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Table 2. 1: Frequency (number) of Y and Z sample data in each state. 

 
 

  
          

 
    State of Z 

  

State of 
Y 

No. of 
Y 

LL L N H HH 

  LL 0 0 0 0 0 0 

  L 38 5 31 2 0 0 

  N 1093 0 11 1058 23 1 

  H 16 0 0 1 13 2 

  HH 0 0 0 0 0 0 
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According to the law of large numbers, the relative frequency of the observations 

of a random event converges to the actual probability of the event when the number of 

random experiments/observations approaches infinity. 

 Now suppose that despite zero empirical possibility of having   in    ,   has 

been observed in this state. Since   is a function of   , it is affected by the state    of  . 

To calculate this impact (conduct probabilistic inference), we use Bayes’ rule: 

                                               
             

       
 

      

 
 

 

 
              (2.3) 

indicating that such an inference is impossible. Because Bayesian inference is highly 

dependent on the availability of the conditional and prior probabilities, the probabilistic 

inference does not yield a reasonable result for cases for which no data are available.  

Knowledge of the probability of such “rare” states/events is of great importance, as in 

many cases a random variable taking an extreme value is indicative of an unsafe (highly 

risky) condition. This is the main motivation for this research that is aimed at: (i) solving 

the problem of rare-event probability estimation from historical data, and (ii) using the 

estimates in probabilistic inference in the framework of Bayesian networks. 

2.3. Preliminaries 

2.3.1. Moments of a Probability Distribution Function  

Moments of a random variable (vector)    with a probability density function      are 

defined as expected values of arbitrary functions of the random variable (vector). The 

most common moments are the first-order moment (     or mean) and the second-order 

moment (            ).
38,39

 Ordinarily, there are no limitations on the form of 



33 
 

 
 

moment functions selected, but polynomial functions are often preferred, because their 

analytical integral is more likely to have a closed form.  

Let              be a moment function of a d-dimensional random vector 

                 with a PDF                , where    is the domain of  . 

The moment of the random vector   with respect to the moment function       is defined 

as: 

                                                     
 

                                  (2.4) 

For a sample population, the moment of the population with respect to the moment 

function       is calculated using sample moments: 

                                                    
 
                                         (2.5) 

where   is the number of samples of     

2.3.2. Entropy of a Random Variable 

In information theory, the entropy of a random variable is a measure of the uncertainty of 

the random variable.
40

 In this context, the term usually refers to the Shannon entropy,
41

 

which quantifies the expected value of the information contained in a message.
 
 Shannon 

entropy of a random variable is a measure of unpredictability or information content of 

the variable. In the case of a coin with one tail and one head having equal probabilities, 

the entropy of the coin toss is highest. This is because it is not possible to predict the 

outcome of the coin toss before tossing the coin. However, a coin toss with a coin that 

has no tails and two heads has zero entropy because the coin toss outcome is always 

known and can be predicted perfectly. Most real-world data fall between these two 
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extremes. So, as the entropy of a random variable increases, its unpredictability 

(uncertainty) increases, and vice versa. 

For a continuous random vector   with a PDF      on a domain   the 

information entropy is defined as
39

: 

                                                             -               
 

            (2.6) 

with 0×ln 0 = 0. This notion of entropy is similar to the notion of entropy in 

thermodynamics. Physically, systems tend to evolve into states with higher entropy. In 

the probabilistic context,       is viewed as a measure of the information carried by  , 

and as data are communicated/transmitted more, they are corrupted with more noise 

(entropy increases) and therefore they carry less information. 

2.4. Method 

Given a data set, to estimate a PDF of a random vector, a PDF with the following two 

properties is sought: (a) a selected set of the moments of the PDF should be the same as 

the moments of the available data on the variables; and (b) the PDF should have the 

highest level of uncertainty amongst all possible PDFs satisfying the first property. In 

other words, a PDF      is sought that is the solution to the constrained optimization 

problem:  

                                                         -               
 

  (2.7) 

subject to the equality constraints:    
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                         (2.8) 

where     is the  -th moment of the sample data. The integer   is the number of moments 

of the PDF that the user chooses to match with the moments of the data sample, in 

addition to the zeroth moment,      which corresponds to the zeroth-moment function, 

        One should always set          and make sure to include this moment function 

in the search for the optimal PDF. The zeroth-moment equality constraint simply ensures 

that the calculated PDF always satisfies        
 

      . This PDF estimation 

formulation is a multivariate version of the univariate formulation introduced by Zellner 

et al.
42,43

 This method determines the PDF that represents the data and accounts for the 

maximum uncertainty that exists in the data. As it does not impose many prior 

assumptions on the underlying distribution to be estimated, the method allows for the 

estimation of PDFs with minimum bias. The constrained optimization of Eqs. (2.7) and 

(2.8) is a classical optimization problem, whose solution minimizes the Lagrange 

function: 

                                            
 

                 
 

     
 
      (2.9) 

where         are the Lagrange multipliers. The solution to the optimization problem 

satisfies the following necessary conditions of optimality: 

                                 
   

   
                       

 
                         (2.10) 

where       is the estimated PDF. The first algebraic equation from the left in Eq. (2.10) 

yields:  
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Using the Leibniz integral rule, the preceding equation simplifies to: 

                  
    

      
 

    

Therefore, 

                                                                    
    

       

leading to the closed-form analytical solution: 

                               
        

which can be written in the form: 

                                                      
 

     
              

           (2.11) 

Requiring        to satisfy the zeroth-moment equality constraint:  

                                      
 

  
 

     
              

      
 

  , 

implies that  

                                                                
      

 
     

There are different ways to calculate the rest of the Lagrange multipliers. For example, 

the Lagrange multipliers can be found by requesting that the theoretical moments 

described by the estimated PDF be equal to the empirical moments evaluated by taking 

the average over the sampled data. This procedure is usually referred to as the method of 

moments (MM).
44

 Different versions of MM along with the generalized method of 

moments
45,46

 have been proposed. Requesting equal data and model moments seems 

reasonable by the law of large numbers – which results from the maximum likelihood 

estimation (MLE) method when the distribution belongs to the exponential family. The 
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MLE is a probabilistic approach for minimum-variance estimation of PDF parameters.
47

 

As shown later, the use of the MLE to estimate the Lagrange multipliers (model 

parameters) requires that all moment constraints are satisfied. 

Given sample points that are independent and identically distributed, using the 

MLE method, the unknown parameters (Lagrange multipliers) of the PDF are obtained 

from: 

            
    
              

    
              

    
 

              
 
    

 

 
     (2.12) 

where   is called the likelihood function,    is the vector of the Lagrange multipliers,   is 

the number of samples,   denotes the data samples forming an (   ) matrix, and  

                      

 

   

   
 

 

which is often called the partition function. The MLE method requires the Hessian matrix 

of the likelihood function to be absolutely negative definite at      . Since    is a 

monotonically increasing function, the model parameters can also be calculated by 

maximizing    of the likelihood function: 

                    
    
                 

    
                    

 
   

 
      (2.13)   

This is usually known as the log-likelihood of the parameters given the data.  

2.4.1. Existence and Uniqueness of the MLE Solution  

In this section, the existence and uniqueness of the MLE solution is investigated. The 

MLE optimization problem of Eq. (2.13) may have multiple local optima in addition to 

the global one. A unique solution (global optimum) exists when the likelihood function is 
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strictly convex. The number of solutions usually increases, as the degree of nonlinearity 

of the PDF model increases, the number of parameters of the model increases, or the size 

of the data sample decreases. The number of solutions also depends on the family of 

distributions to which the PDF belongs. Since the ME moment-constrained estimator is 

from the class of exponential distributions,
48

  the MLE problem of Eq. (2.13)  is expected 

to have a unique optimum (global maximum).
49

  

First it is proven that the MLE problem described by Eq. (2.13) has a solution. 

This can be achieved simply by showing that the system of partial derivatives of the log-

likelihood function with respect to the Lagrange multipliers set to zero has a solution: 

                           
 

   
             

  

   
    

 
                                 (2.14) 

leading to:  

                                         
  

   
        

 
                                    (2.15) 

Hence, the model parameters should be estimated by satisfying the   nonlinear algebraic 

equations in Eq. (2.15). The right-hand sides of Eq. (2.15) are simply the empirical 

moments, indicating that larger sample sizes do not add any additional computational 

burden to the calculation of the model parameters, because only moments of the sample 

data are needed. The system of nonlinear equations in Eq. (2.15) that the Lagrange 

multipliers should satisfy can be solved using a root-finding method, such as the Newton-

Raphson method.
42

 

Furthermore, according to the definition of the partition function,  : 
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       (2.16) 

Therefore, Eq. (2.14) simply requires that: 

                                                                                 

which implies that if the empirical moments,              are finite, then the 

likelihood function has a critical point.  

Now, this critical point that exists is shown to be a unique maximum. The entries 

of the Hessian matrix of the log-likelihood function are given by: 
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(2.17) 
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where          is the covariance of two random numbers   and  . Eq. (2.17) indicates 

that the Hessian matrix is symmetric and strictly negative definite for every value of the 

vector of the Lagrange multipliers, implying that the critical point is a unique maximum. 

Eq. (2.17) also indicates that the use of larger-size samples (larger  ) gives the likelihood 

function a sharper peak, allowing one to calculate the maximum with less number 

iterations. In summary, the MLE solution of the moment-constrained ME problem is 

exactly the same widely used method of moments where                  .  

2.4.2. Selection of Moment Function  

The type of the moment functions not only affects the estimated density functions, but it 

can affect significantly the computational complexity in the parameter estimation and the 

calculation of probabilities using the resulting PDF models. For a systematic selection of 

the moment functions, a criterion-based algorithm is suggested. In the MLME PDF of Eq. 

(2.11), if each       is replaced with a truncated Taylor series expansion of       around 

the expectation of  , then the problem of looking for proper       moment functions is 

converted to that of finding an optimal order of the truncation for each of the expansions: 

                                  
 

 

 
        

 
              

          
     

=      
    
 

 

 
              

         
    

where           are constants to be estimated. For simplicity, one can seek equal 

truncation orders, denoted by  , for all of the moment functions. With this simplification, 

the search for the moment functions is converted to a search for an optimal truncation 

order,     , that yields the best fit of        to the data. Measures like mean square error 
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(MSE) and maximum likelihood are often used to find an optimal level of the model 

complexity (    ). It is known that ML estimates tend to over-fit data, if model 

complexity exceeds a certain limit.
50,51,52

  Such a limit exists here as well. However, since 

this optimum usually occurs at a high level of complexity at which the MSE and ML 

measures are insensitive to the complexity, a method is proposed herein to find an 

optimal value of the truncation order (    ) that provides adequate 

complexity/nonlinearity at a reasonable computational cost. A plot of the natural 

logarithm of the likelihood function at       versus the order of the truncated Taylor 

series usually shows that the natural logarithm approaches a limit as the order of the 

truncation increases. This implies that an optimal truncation order (    ) can be 

calculated, for example, by using: 

                                                  
                    

  
   

 

       (2.18) 

where                is the maximum of the likelihood function using an    -order 

truncated Taylor series expansion of every              .    is a positive scalar 

design parameter; a higher value of    leads to a lower value of      and lower 

computational complexity and time needed to estimate PDF parameters and use the 

estimated PDFs.  Therefore, the MLME PDF estimation provides a goodness-of-fit 

measure that can be used to systematically evaluate the advantages and disadvantages of 

selecting each moment function.  
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2.5. Application to Two Examples 

In this section, two examples are considered to show the application and performance of 

the MLME PDF estimation method. 

2.5.1. Example 1: A Bivariate Bayesian Network 

Consider two random variables   and   described by: 

             (2.19)  

                                        (2.20) 

where           represents a normal distribution with a mean of   and a standard 

deviation of      .            is white noise standard deviation of      (a normal 

distribution with a mean of   and a variance of 0.01). The Bayesian network of this 

example is shown in Figure 2.1. The MLME method of PDF estimation is applied, and 

the resulting MLME-estimated PDF is compared with PDFs estimated from the same 

dataset using Student’s t and Gumbel copulas and the method of kernel.
53,54

 Student’s t 

and Gumbel copulas were chosen, as they represent two distinct classes of elliptical and 

Archimedean copulas, respectively, and the kernel method is a widely used non-

parametric approach to probability estimation. All of these powerful methods have been 

extensively used to estimate the behavior of uncertain variables.
53,54

 

First, 100 samples of   are generated followed by 100 samples of   using Eqs. 

(2.19) and (2.20). Figure 2.1 shows a scatter plot of the 100 ( ,  ) samples. When the 

random numbers are discretized into the five intervals (states), Low-Low (  ), Low ( ),  
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Figure 2. 1: Scatter plot of the 100 (Y, Z) samples. 
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Normal ( ), High ( ) and High-High (  ), according to the rule described in the second 

section, the marginal probabilities given in Table 2.2 are obtained.  

As can be seen in Table 2.2, none of the samples are within an    or a    state. 

Therefore, when there is an evidence that lies within one of these states, no inference can 

be made. However, as shown in Figure 2.2, when there is an evidence that lies within a 

state other than the    and    states, partial inference is possible. Note that this network 

was constructed using Netica,
55

 which does not show states that have zero probability. To 

be able to conduct complete inference, the MLME PDF estimation method with        

is used herein to estimate complete PDFs of the   and   from the 100 samples. A few 

low-order moments of the random variables   and  , and the combinatorial random 

variable            are given in Table 2.3. Figure 2.3 shows that as the order of the 

truncations,  , increases, the maximized logarithm of the likelihood function converges 

to a higher limit. Figure 2.3a compares the true       described by Eq. (2.20) and the 

      estimated using   = 2, 4 and 6. Probabilities of the random variables   and   being 

inside the selected states/intervals are calculated using: 

                                                                       
  

 (2.21) 

                                                        
        

  
  

    
           

      
             (2.22) 

where     and     denote the  -th state of   and the  -th state of  , respectively.  
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Table 2. 2: Marginal probabilities (relative frequencies of the samples) of Y and Z being in the 

LL, L, N, H and HH states. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
          

  States 

Variable LL L N H HH 

Y  0.000 0.039 0.932 0.029 0.000 
Z 0.000 0.063 0.915 0.022 0.000 
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Figure 2. 2: Bivariate Bayesian network for Y and Z trained with 100 samples in Netica. (a)  

Normal operation network. (b) Predictive inference (evidence is for Y). (c) Diagnostic inference 

(evidence is for Z). 
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Figure 2. 3: (a) Univariate MLME PDF estimated using different truncation orders. (b) Log-

likelihood of the PDF of Z, MLME estimated with different moment orders. 
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Table 2. 3: Moments of Z and (Y, Z) in an increasing order of moments, calculated using the data 

samples given in Figure 2.1. 

 
                      

  
Moment 
Function 

                                                

  
Moment 

Value 
1.000 0.745 0.621 0.520 0.452 0.397 0.357 0.325 0.301 0.283 

  
Moment 
Function 

       y  z                       y       

  
Moment 

Value 
1.000 0.062 0.745 0.338 0.010 0.621 0.113 0.126 0.027 0.520 
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2.5.1.1. Comparison with Conventional Copulas 

Copulas are a class of multivariate probability distribution functions primarily defined for 

continuous random variables and used to estimate multivariate PDFs.
56,57

 They are 

particularly useful due to the fact that they use a predetermined dependence structure 

between the random variables, indicating the extent to which random variables are 

dependent on each other. This dependence structure is reflected in the form of copula 

cumulative distribution function (CDF), denoted by  , or its equivalent PDF, denoted by 

 , which are related to each other according to: 

                                                               
            

       
 (23) 

  is actually the probability integral transform of a multivariate PDF; that is, it develops a 

multivariate CDF over the marginal CDF of individual random variables of interest. 

After choosing an appropriate copula, its parameter(s) are adjusted with respect to 

the available data. This copula is then utilized to estimate a multivariate PDF using: 

                                                                   
    

 
       (24) 

where    and    
are multivariate and univariate marginal PDFs, respectively, and  

                                                    
                

   

   (25) 

with    
 being the domain of     There are several families of copulas. The elliptical 

copulas that are based on well-known multivariate distributions (e.g., Gaussian copula) 

and Archimedean copulas (e.g., Frank and Gumbel copulas) have been used widely to 

estimate multivariate probability functions
58

. Despite their many advantages such as low 

computational complexity and the ability to capture nonlinearity, conventional copulas 
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are only applicable to random variables whose relationships can be described by 

monotonic functions. This weakness is a result of function parameter(s) of copulas, which 

are supposed to describe the degree of correlation between random variables based on the 

covariance of data and its derivatives.
59

 Since the covariance between two random 

variables can only capture monotonic dependence (as in linear or logarithm functions), it 

cannot describe the true dependence in cases where non-monotonic dependence exists.  

Herein, the joint PDF        is estimated from the same dataset using Student’s t 

and Gumbel copulas for the bivariate case: 

                           
 

        
 
 

   
         

       
             

   
      

  

   
      

  
   (2.26) 

                                                     
            

                (2.27) 

where     and    are defined according to Eq. (2.25),   is the degree of freedom of the 

univariate Student’s t distribution (t),          and   is Spearman’s rank correlation: 

  
          

               
 

with        denoting the variance of random variable  . The multivariate PDF of the 

random vector       is then calculated using Eqs. (2.23) and (2.24), where the marginal 

PDFs    and    are obtained using a non-parametric kernel method,
60

 also described in 

the next section. Figures 2.4a, 2.4b and 2.4c compare three PDFs (multivariate MLME 

estimated PDF, and Student’s t and Gumbel copulas estimated PDFs) estimated from the 

same data, with the data.  The little circles represent the actual data, and the solid line 

contours represent the estimated bivariate joint PDF of random variables Y and Z. Figure 

2.4a shows the estimated PDF by the MLME method using a 7-th order of truncation. 
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Compared to actual PDF shown in Figure 2.4e, the MLME PDF can capture the non-

monotonic behavior of the sine function around Y = 0.  As the copulas use the covariance 

matrix of Y and Z to capture the correlation between these variables, as can be seen in 

Figures 2.4b and 2.4c, Student's t and Gumbel copulas fail to predict the actual behavior 

of the data inside and outside the range of the data. In summary, the copula functions are 

incapable of providing estimates that agree with the PDF of the actual data.  

2.5.1.2. Comparison with Non-parametric Kernel Method 

Kernel density estimation methods are a sub-class of non-parametric density estimation 

techniques in which a simplified probability distribution called kernel is considered for 

each sample point. A weighted sum of these kernel functions over the entire sample set is 

then the kernel density estimator
60

: 

                                           
   

 
         

 
 

   
                

        
    (2.28) 

where     is the PDF estimated using a kernel method with a scaled kernel function      , 

     is the kernel probability density function, and   is called the bandwidth matrix of 

the kernel function      . The bandwidth matrix is estimated by minimizing a measure 

of the error between the sample and estimated PDFs. Examples of such measures are the 

mean integrated square error or the mean integrated absolute error. Kernel estimators are 

applicable to both univariate and multivariate problems. In the univariate case,   is a 

scalar, generally known as a smoothing parameter. Kernel density estimation methods are 

not considered model-based in the sense that no closed-form model is used to describe 

the underlying PDF. However, they require kernel models. As when expressing a 



52 
 

 
 

function in terms of Eigen functions, a PDF is expressed in terms of kernels; that is, as a 

weighted sum of PDFs (kernels), where each sample point is observed in   .
61

   

In practice, the kernel estimators have shown satisfactory performance and 

stability for random vectors with low dimensions only. For higher dimensions, however, 

estimating the optimal bandwidth becomes increasingly complicated. Another 

shortcoming of the kernel methods is that their rate of convergence with respect to 

sample size   is lower than that of their counterpart parametric methods (    compared 

to     where       .
62

 This means that with small sample sizes it is not possible to 

remove non-smoothness caused by individual data points. A large increase in the 

smoothing parameter may eventually lead to over-smoothness and valuable information 

loss about the underlying PDF such as multimodality. As a result, to obtain smaller 

estimation errors, larger sample sizes should be used, which can lead to a very large 

analytical expression without a closed form. However, in the case of the MLME 

estimation method single sample points are not taken into account individually, but their 

cumulative properties are compacted and exploited in the collective form of moments. On 

the other hand, as described in Eq. (2.17), the use of larger-size samples (larger  ), not 

only doesn't decelerate the probability estimation, but also gives the likelihood function a 

sharper peak, allowing the maximum to be calculated with less iteration. However, it 

should be noted that increasing the degree of connectivity of nodes (not necessarily the 

network size) affects the parameter estimation step by increasing the number of 

parameters needed as coefficients of the multivariate polynomial moment functions 

defined in previous section. 
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Kernel density estimators also have the same disadvantage that copula methods 

have; their constant parameter matrix for the multivariate PDF estimation cannot capture 

non-monotone behavior in historical data, resulting in the estimation of PDFs that 

describe uncorrelated random variables. Furthermore, in kernel methods, even though the 

bandwidths are calculated to obtain the PDF with minimum error inside the region where 

samples are taken, the predictions made by kernel methods outside the observed zone are 

unreliable, unless the variables are monotonically related. Therefore, unlike the MLME 

method, the kernel methods do not introduce a general solution to the rare-event 

probability estimation problem.  

To estimate the bivariate PDF of   and  , bivariate Gaussian kernel with a 

smoothing parameter equal to the square root of the data-based covariance matrix of the 

random numbers are used herein. As can be seen in Figures 2.4d, the non-parametric 

kernel method also fails to predict the actual behavior of the data outside the range of the 

data. However, since the kernel method uses an averaging algorithm to estimate 

probability values, its predictions are reliable locally within the range of the data.    

Figure 2.5 compares the posterior conditional PDF of variable   given   observed 

in its    state, estimated by the MLME method, the Student’s t and Gumbel copula 

methods, and the kernel method. As can be seen, the only reliable estimation is that of the 

MLME method. As mentioned earlier, due to the non-monotonic dependence of   on  , 

covariance-based approaches are unable to capture the actual relation hidden in the data. 

This inability increases in regions distant from the mean of the sampled population. 
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Figure 2. 4: Contour plots of estimated joint PDFs of (Y, Z) and samples shown by the small circles. a) 

MLME PDF estimated using a 7th-order truncated Taylor series. (b) PDF estimated using Gumbel 

copula. (c) PDF estimated using Student’s t copula. (d) PDF estimated using Gaussian kernel. (e) True 

PDF. 
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Figure 2. 5: Comparison of posterior conditional PDFs of the random variable Z given its parent 

(Y) in its High-High (HH) state, when no data in the state HH provided by the historical dataset. 
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2.5.2. Example 2: A Process Example 

Consider the stirred heating tank shown in Figure 2.6. A steady-state first-principles 

mathematical model of the process is:  

                                                                       (2.29) 

                                                                 (2.30) 

                                                                
    

 
    (2.31) 

PDFs of the root nodes (independent variables) of this process and the two noise signals 

are given in Table 2.4.  This first-principles model is used to extract the causal relations 

among the variables to construct a Bayesian network, generate a normal operation 

dataset, which plays the role of historical dataset in this example, and finally to describe 

the actual behavior of the process to be compared with the behavior predicted by the 

estimated MLME PDFs.   

PDFs of the independent variables and white noise signals are chosen such that 

the random samples fall entirely in their normal operation states. The reason behind this 

selection is to replicate the situation where the information available in the historical data 

includes no faulty operation records. This allows determination of whether the MLME 

PDF yields correct predictions when no abnormal-condition data is present. Figure 2.7 

shows the Bayesian network representing the system’s normal operation data. As in the 

bivariate Example 1, each observed region is split into three state; Low ( ), Normal ( ) 

and High ( ). Using the MLME method, the states for each variable can be extended to a 

level satisfying our design needs by adding the Low-Low (  ) and High-High (  )  
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Figure 2. 6: Schematic of the heating tank example. 
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Table 2. 4: Probability distributions of root nodes (variables) and noise signals in the heating tank 

example. 

  Variable or Noise Distribution 
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Figure 2. 7: Bayesian network of Example 2 trained using complete PDFs estimated using the 

MLME method to cover the extreme states, LL and HH, as well. The shown probabilities are 

normal operation probabilities. 
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Figure 2. 8:  (a) Bayesian network of Example 2 showing updated (posterior) probabilities when 

evidence Fi in HH was given to the network. (b) RKLD values of the five nodes. 
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Figure 2. 9: (a) Bayesian network of Example 2 showing updated (posterior) probabilities when 

evidence To in LL was given to the network. (b) RKLD values of the three root nodes. (c) 

Differences between posterior and prior probabilities of the most-likely-cause root node, Q. 
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states. All states are defined according to the rule stated in Section 2.2.  Inference is 

conducted using the Netica software of Norsys Corp.
55

 

After estimating complete joint and conditional PDFs using the MLME method, 

inference (from evidence) can be conducted using the Bayesian network. Once the 

network is provided with evidence; that is, probability distribution(s) of evidence node(s) 

are set according to the evidence, the probabilities of all other nodes are updated. These 

updated probabilities are indeed posterior probabilities. Two types of studies can then be 

conducted.  If one is interested in how the evidence has altered the probability 

distributions of the nodes/variables that are affected by the evidence node(s)/variable(s) 

in the Bayesian network, the inference is called a “predictive” inference. On the other 

hand, if one is interested in how the evidence has altered the probability distributions of 

the nodes/variables that affect the evidence node(s)/variable(s) in the Bayesian network, 

the inference is called a “diagnostic” inference. The diagnostic inference can be used for 

fault detection. 

To quantify the difference between the posterior and prior probabilities of each 

variable, a useful measure is the relative Kullback-Liebler divergence (RKLD)
63 

that is 

applicable to both continuous and discrete random variables and to individual probability 

values as well. For a node   , the      is defined as: 

                                                            
  

     

      
 
   

 (2.32) 

where 

                                                       
       

 
       

     

     

    (2.33) 

where      
and      

are the prior and posterior probabilities of the  -th state of node 
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   with   states, respectively.   is the number of nodes of the network under 

consideration. KLD can be viewed as the expected value of     
   

   

  with respect to the 

prior probability    
. If the prior probability of a state is 0, its corresponding term in KLD 

expression is 0, since           .  

2.5.2.1. Forward Inference (Prediction)    

In the context of predictive inference, the variable with the highest      value is the 

variable mostly affected by the applied change (evidence). Hence, this index can be used 

to perform risk assessment. Outcome of such an analysis together with the costs of the 

associated abnormal events can be used to quantify risks. Such an analysis can be 

implemented off-line and on-line. Offline predictive Bayesian inference is a powerful 

tool for risk assessment and risk scenario development, as it provides valuable 

information about most probable consequences of changes applied to the system and can 

be utilized to detect or remove risky features from processing plants. Online (real-time) 

predictive Bayesian inference can provide important information about the consequences 

of observed evidences. This information can be used immediately to take a series of 

preventing actions leading to loss reduction.  

Figure 2.8a shows the Bayesian network of Example 2 with updated (posterior) 

probabilities when the inlet flow is at its    state, and Figure 2.8b shows the 

corresponding      values of the nodes. The      values indicate that when the inlet 

flow moves to its    state, its most severe effect is on the water level,  , with a 

probability of more than 50% being in the    state. 
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2.5.2.2. Backward (Diagnostics) Inference: Fault Detection   

The      values can also be used to identify: (a) the most-likely-cause root 

variable/node whose change has led to the observed evidence fed to the network, and (b) 

the most likely state of the most-likely-cause root node. After identifying the most-likely-

cause root node for the evidence (root node with the highest      value), for each state   

of the most-likely-cause root node      the difference between the posterior and prior 

probability of the state   is calculated: 

                                          
        

        
                               (2.34) 

where         
        

 and        
 denote the deviation index, and the posterior and prior 

probabilities of  state   of the most likely cause node for the observed evidence. As 

implied by the definition, a positive value of the deviation index indicates an increase in 

the probability of state  ; larger values indicate greater contributions of the abnormal 

event to the state. 

 Figure 2.9a depicts Bayesian network of Example 2. The probabilities given in 

this figure are updated (posterior) probabilities corresponding to the evidence that    is in 

the state  . The corresponding calculated      values shown in Figure 2.9b indicate that 

the most-likely-cause root node is  .  Figure 2.9c showing the differences between 

posterior and prior probabilities of the states of   points to the state of   of the root node 

  having the largest prior-to-posterior probability change. An interesting implication of 

constructing a BN model from the historical data can be seen in this example. Although 

the inlet temperature, the rate of heat transfer to the tank,  , and the inlet flow rate,   , all  
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Figure 2. 10: Diagnostic Bayesian inference with 1,000,000 samples and with the MLME 

estimated network. (a) Posterior probability distribution of   , (b) posterior probability 

distribution of  , and (c) posterior probability distribution of   . 
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affect the outlet temperature,   , but they do not have equal contributions to the changes 

observed in the outlet temperature. As Figure 2.9a shows, given the evidence of    being 

in the    state, change in the  ’s probability distribution is higher than the changes in the 

two other parents of   . Therefore, backward Bayesian inference identified a change in   

as the most probable cause of    being in the    state. Similar arguments can be made to 

find the most deviated state from Figure 2.9c. Figure 2.10 compares the posterior 

probabilities of the parents of the node    given    in its    state and calculated using 

two different historical data sets for calculating the parameters of the network. The blue 

bars represents posterior probabilities calculated by a network trained by one million 

samples drawn out of the system’s governing equations, while the green bars represents 

posterior probabilities calculated by a network trained using the MLME completed 

conditional probabilities.  This figure clearly reveals the high reliability of the MLME 

PDF estimation method for use in probabilistic inference. 

2.6. Conclusions 

The problem of rare-event probability estimation was studied.  A moment-constrained, 

maximum-likelihood, maximum-entropy method of multivariate PDF estimation was 

proposed. This method is superior to other widely used approaches such as copula 

densities and non-parametric kernel methods because it applies when relations among the 

variables are non-monotonic. Copula and kernel estimators, despite their power in 

capturing highly nonlinear behavior, predict poorly in regions where no data have been 

observed. Another advantage of the MLME method is its capability in replicating the 

complex behavior of probability densities in a natural way using moments introduced by 
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the sampled population. The MLME PDFs are highly interpretable in terms of their 

closed-form formulas using the statistical properties of the data itself (skewness, 

peakness, etc.). Moreover, since PDFs estimated by the MLME method belong to the 

class of parametric PDFs, the convergence rate of the method is higher than other non-

parametric PDF estimation methods.
62

 To take advantage of the likelihood function as a 

goodness-of-fit measure, a method of selecting the moment functions was presented. 

Finally, unlike non-parametric methods, the computational load of the parameter 

estimation step of the MLME method is not affected negatively by the number of samples 

being processed – primarily because MLME PDFs use cumulative characteristics of data 

in moment values rather than individual data points. Larger sample sizes yield steeper 

peaks for the likelihood function, which lead to computationally-faster optimizations.  
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Chapter 3: Estimation of Complete Discrete Multivariate Probability Distributions 

from Scarce Data with Application to Risk Assessment and Fault Detection 

 

3.1. Introduction 

Risk assessment usually refers to a set of analyses that identify potential hazards 

and evaluate possible consequences of the hazards if they occur.
1
 It involves estimating 

(a) the likelihoods of different possible risky situation scenarios and (b) the costs 

associated with the risks. More specifically, risk assessment includes simultaneous failure 

cost estimation, development of realistic fault scenarios, and quantification of risk 

probabilities.  

Most of the current risk assessment and fault detection schemes have focused on 

abnormal situations with high probabilities and moderate costs,
2
 whereas a major fraction 

of catastrophic and large scale incidents with highly destructive consequences are caused 

by some triggering events whose probabilities had been found infinitesimal by risk 

assessment. This class of abnormal events are usually referred to as “rare events”,
3
 which 

are of two major types: (a) those that are so rare and far‐fetched that their probabilities 

may be considered to be practically zero and (b) those that are actually predictable but 

show a minor recurrence frequency compared to the plant’s expected lifetime. An 

example of  the first type is industrial plant destruction due to a meteor hitting the plant, 

and an example of a rare event of the second type is a control system failure. Throughout 

this chapter we simply use the term “rare events” for those of the second type.  

Although the probabilities of the rare events may be predictable and thus the 

negative impacts of their consequences can be reduced, modern day industrial 
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establishments are still suffering from the resulting catastrophes for two major reasons. 

First, the probabilities of rare events are usually underestimated intentionally or 

inadvertently. This underestimation eventually leads to a false assurance that the 

associated risks are negligible as well. Because of such a perception, the associated risks 

are not taken very seriously, and rudimentary precautionary schemes are used to mitigate 

the risks. Second, the estimation of the probabilities of events that have seldom or never 

happened, observed or recorded in the course of plant operation carries a great deal of 

uncertainty in its outcome. This estimation uncertainty is mainly due to the lack of a 

general method of integrating the rarity and “extrapolation into the future” of sample 

realizations. Consequently, the estimates are hardly useful in practice. Hence, an open 

problem is reliable estimation of probabilities that are unknown, infinitesimally small, 

and hard to predict. This problem becomes even more challenging and at the same time 

more interesting when it comes to studying the complex failure scenarios, where the rare 

event simulation is not simply to determine the failure probability of an individual 

component, e.g. a pump, but calculating the probability of a series of subsequent failures, 

when due to complicated interactions between components fault can propagate and 

finally lead to a catastrophe. 

Estimating probability of rare events has been under active research in the past 

decade. In cases where an accurate plant model is available, most research has focused on 

sampling from the model. Methods such as Markov Chains Monte Carlo,
4
 importance 

sampling,
5
 and splitting

6
 have been employed extensively to calculate probability 

distributions to identify abnormal situations. However, in cases where a reliable model is 

not available, especially one that accounts for uncertainties in the system, sampling 
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methods fail to provide a thorough representation of the system’s behavior. In such cases, 

probability estimation methods have been developed to reconstruct probabilities of 

possible random events from the data. The most primary method of this type is the 

histogram method,
7
 which itself belongs to the non‐parametric probability estimation

8
 

group. Parametric methods
9
, on the other hand, have also been employed widely to 

estimate probabilities by considering a parametric family behind the observed data. In 

this context, sophisticated probabilistic structures such as copula densities
10

 and moment 

based probabilities
11

 have been proposed to add maximum flexibility to the estimated 

models. Nevertheless, despite all advantages of probability density estimation techniques 

such as their purely data-based framework, they still suffer from high computational cost 

(as of the non‐parametric method of kernel
12

) or lack of extendibility to the general 

dependence structure observed in the data (as of conventional copula methods).
13

  

Once complete probability distributions were estimated, then one can conduct (a) 

prediction to assess risk and (b) inference to perform fault detection and identification 

using Bayesian networks.
14

 Alternative fault detection and identification methods use 

Kalman filtering,
15

 principle component analysis,
16

 fault and event trees,
17

 artificial 

neural networks,
18

 fuzzy logic based modeling,
19

 or other concepts.
20 

In this chapter we propose a method of estimating discrete multivariate 

probability distributions from scarce historical data with a special attention to the states 

with no observations (rare states). The method is based on a constrained maximization of 

the information entropy function. It considers information coming from every individual 

sample points in the form of sample moments, which provides a framework for maximum 

use of information encoded in the data. Such a model will further be applied to estimating 



75 
 

 
 

parameters of Bayesian networks and eventually provide a stochastic modeling 

framework for risk analysis and fault detection under rare event regime. Unlike 

traditional approaches to Bayesian network parameter estimation using the local relative 

frequency technique to estimate probabilities, the method incorporates all information 

presented by finite datasets to set up discrete multivariate probability distributions 

extendable to unobserved regions. With such probability distributions, the calculation of 

unknown and near-zero probabilities becomes possible and much faster than sampling 

from the first principles models. Furthermore, the method is able to model nonlinear and 

non-monotonic relations with an optimal level of model’s complexity. Moreover, 

combination of the proposed method with Bayesian networks provides an important tool 

in modeling and calculating the probability of multilevel risk scenarios, where due to the 

causal interrelationships between the process components failure can propagate through 

the system. This work is an extension the method presented in Chapter 2
21

  on estimating 

probability density functions of continuous random variables. We also present two 

approaches of finding the optimal complexity level of the estimated probability 

distributions without over-fitting or losing of flexibility. These objectives are met through 

controlling the likelihood (as a goodness-of-fit measure) with respect to the model’s level 

of complexity. 

The rest of the chapter is organized as follows. Section 3.2 describes the 

constrained maximum-entropy probability estimation method for discrete random 

variables.  Section 3.3 begins with an example on how rare events are connected to small 

samples sizes. The probability distribution estimation method is then applied to an 
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example Bayesian network, and the estimated and true probability distributions are 

compared. Finally, conclusions are made in Section 3.4. 

3.2. Method 

3.2.1. Entropy Maximization     

To estimate the probabilities of unobserved events from the probabilities of observed 

ones, we combine two concepts widely used in statistical learning
22

 to estimate complete 

probability distributions. The first concept is the information entropy introduced by 

Claude Shannon
23

 as an informatics equivalent of the thermodynamics entropy, which 

represents disorder. The maximum entropy principle
24

  states that every system loses its 

information content gradually, whether intrinsically (similar to what seen in the nature) or 

observationally, where the degree of uncertainty (lack of predictability) about the system 

grows with time from the last available observation. The information entropy of a 

discrete random variable     denoted by     , is defined as:
25 

                                                             
 
                               (3.1) 

where         is the probability of       and   is the number of the states of   

(discrete values that     can take). 

In information theory, maximization of the entropy function is frequently used to 

ensure that minimum prior artificial assumptions are included in knowledge-based 

systems.
26

 This procedure leads to minimum bias models. If one tries to estimate a mass 

probability distribution (PMF) by maximizing the entropy function without imposing any 

constraints on the shape of the distribution, then the result will trivially be a uniform 
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distribution in which all states have equal probabilities of occurrence. In such a system, 

the outcome of the random process is absolutely uncertain; that is, there is no outcome 

that is more likely than the others. However, for every process there is usually some 

information, no matter how uncertain, that can be used to impose some constraints on the 

entropy maximization so that a more specific and informative probability distribution can 

be obtained.  

3.2.2. Moments of a Probability Distribution 

Given the probability distribution of a discrete random variable  , the theoretical moment 

of this distribution with respect to a moment function       is given by:  

                                                 
 
                            (3.2) 

For example, when          

                                                               
 
         (3.3)   

where      is the expectation or mean of  , and when                , then 

                represents the degree of diffuseness of the PMF or variance, and 

when        
   

 
  ,    

   

 
    provides information on the skewness or 

asymmetry of the distribution, where   and   refer to the mean and standard deviation of 

the distribution respectively. 

The definition of moments for the univariate PMFs can be extended to the 

multivariate ones. Such multivariate PMFs are of particular interest in the current work 

because of their capability of modeling joint probabilities. Estimation of joint PMFs 

allows the user to obtain complete conditional probabilities, required to train the 



78 
 

 
 

Bayesian networks. In the multivariate case, the moments of a  -dimensional vector of 

random variables,             , are given by: 

                                                     
 
                       (3.4) 

 

Where   denotes the  -dimensional discrete state-space,             is a moment 

function, and               is a joint PMF. In this multivariate case, the information 

entropy is given by: 

                                                                
                                                                                                    

Given historical data on a discrete random vector    using Eq.(3.4) sample moments can 

be calculated. The empirical (sample) moment     of the corresponding sampled 

population is given by: 

                                           
 

 
       

 
                          (3.5) 

where       represents the      sample, and   is the number of the samples. The 

sample moments are forms of encoded information about the structure of the data. This 

information is used to estimate probability distributions that govern the samples. If the 

probability distribution is sought solely based on the sample moments, then the resulting 

PMF will be the maximum-likelihood estimated PMF.
27

 As more moments are included 

in the form of constraints, more information from the samples is included in the estimated 

probability distribution.  
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3.2.3. Constrained Entropy Maximization (ME Method)   

To constrain the maximization of the entropy function, a PMF whose moments are the 

same sample moments, is sought.  In other words, given a set of moment functions, we 

seek optimal model probabilities,            which are the solution to the following 

constrained optimization problem: 

                                               
                 

         
 
      (3.6) 

 

subject to: 

                                                   
                       (3.7) 

where                    and        . Therefore, given the moment functions, 

the constrained optimization problem of Eqs.(3.6) and (3.7) is a conventional nonlinear 

program, which is easy to solve numerically, preferably using a global optimization 

technique to avoid possible local optima.
28

 

3.2.3. Selection of the Moments 

To estimate PMFs reliably, it is essential to select appropriate moment functions. These 

moment functions provide the PMFs with sufficient cumulative information extracted 

from data. The moment function selection not only can significantly improve the 

accuracy of the estimation, but it also provides a means to control the computational 

complexity of the optimization step with minimum information loss due to coarse 

discretization of distribution functions. As an example, estimation of the Gaussian 

distribution requires only the first moment (mean) and the second central moment 
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(variance). Additional moments do not provide considerable additional knowledge from 

the data to arrive at a substantially different estimated distribution. Table 3.1 lists the 

minimal set of moment functions that are needed to characterize a number of well-known 

continuous distribution functions. However, since the true distribution that has given rise 

to observed data is generally unknown, a decomposition technique is used here to 

approximate the true moment functions underlying the observed samples.  

In order to simplify the search for the appropriate moment functions, it is 

proposed here to search for the moment functions           
 
   , where   is a positive 

integer to be selected by the user, and 

                                            

       

             

                     

                          

                            
 

  (3.9) 

Thus,  Eq.(3.7) becomes 

                               
    

 

 
        

 
   ,                       

 
      (3.10) 

then with an appropriate  , the appropriate parameter vector    of the Taylor series power 

expansion and Eq.(3.10), the equality between the expectation of the true moment 

function   and its associated moment   will be achieved. This decomposition indicates 

that the user just needs to choose an appropriate value for the positive integer  , instead 

of choosing appropriate moment functions needed in the original formulation of Eq.(3.7). 

The use of a higher   may seem to provide higher accuracy at the first look. However, in 

general, because (a) the use of a higher   imposes higher computational costs and (b) 

more complex moment functions often fail to predict the actual probability behavior  
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Table 3.1: Some exponential probability distribution functions and their characteristic moments. 
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outside the range of the data (due to over-fitting),
29

 one should use an adequately large  , 

as suggested by Occam’s razor principle.
30

 Hence, there is a tradeoff between 

informationloss in lower‐ order moment functions and high variance of higher‐order 

ones, particularly when prediction of probabilities outside the observed region is 

intended. In view of these, the lowest level of complexity,  , which satisfies an error 

tolerance threshold, should be chosen. To find an optimal   systematically, we propose 

two methods that consider the tradeoff between bias and variance of the estimator. 

Maximum Likelihood Estimation of the Truncation Orders 

Likelihood of a parameter   given a data base   is simply defined as conditional 

probability of   given   or 

                                                                          (3.11) 

where        and        are the likelihood function and conditional probability, 

respectively.   Therefore, to calculate the likelihood function, conditional probabilities 

must be available. Such a definition is the basis of the maximum likelihood estimation.
27

 

The likelihood function indicates how well the observed data samples are described by 

the parameters,  .  

                                                                     
   

                                  (3.12) 

where       denotes the model-prediction of the probability of state   using of the moment 

functions up to order    and    represents the number of data points in  the      state. 

Note that      
 
     .  

Similar to the behavior observed in the case of mean square error and the bias-

variance tradeoff
31

 as the complexity level of a model increases, the model fit the data 
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better and the likelihood function increases. These trends continue up to a certain 

complexity level beyond which these trends reverse; beyond this level of complexity 

(here,  ) the likelihood of the data (as measure of accuracy of the model) decreases but 

the computational cost increases. The value of   that yields the best fit is called the 

maximum likelihood estimate (MLE) of the parameter  :  

                                                                                              (3.13) 

which agrees with Occam’s razor principle. However, since this maximum occurs at high 

orders of   while showing no significant increase through a wide range of lower values 

of  , user may decide to select a lower order   which satisfies some minimal goodness-

of-fit criterion while keeping the computations more tractable.  

Maximum a Posteriori Estimation of the Truncation Orders 

If the Bayes rule is used to relate the likelihood and a priori probability over the model’s 

complexity, one can setup a framework to incrementally update our belief about the 

complexity level. Unlike the MLE, which defines a point-wise estimation, the Bayesian 

model selection provides a distribution for the complexity level; i.e., we can derive 

confidence intervals for our parameter, in addition to other statistical characteristics. 

Using the Bayesian model averaging
32

 we obtain 

                                                            
                          (3.14) 

in which       stands for the maximum truncation order when equal orders for all 

truncations are used. Eq.(3.14) allows us to average over different complexity levels to 

derive a distribution for       . However, it is oftentimes not possible to calculate this 

sum. As a general solution, we approximate        by  
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                                                                                                        (3.15)     

where  

                                
          

    
                    (3.16)    

 The right hand side equation is based on Bayesian belief updating. The parameter   is 

also known as complexity controlling parameter.      denotes the prior probability 

of    Since the likelihood function,       , as stated by Eq.(3.12), does not have a 

closed form in general, setting up a conjugate prior for the likelihood function is not 

possible. However, we can still assign an informative prior, for example a normal 

distribution with a zero mean  and some positive number as the variance. As more 

information is incorporated into this function through the likelihood term, the updated 

belief about   approaches its true value. If the mode of this posterior is used as our point 

estimate of  , this estimation is called maximum a posteriori (MAP) estimation. 

Eq.(3.16) implies if a uniform distribution is used as the prior, MLE and MAP estimates 

indicate the same result for  . In the next section we apply these concepts and algorithms 

to an example Bayesian network. 

3.3. Application to an Example 

To demonstrate the performance of the PMF estimation method, we apply the method to 

a plant with five variables governed by:  

                                                         (Figure   3.1a)                  (3.17) 

                                                        (Figure 3.1b)      (3.18) 

                                                                                   (3.19) 
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                                                                            (3.20) 

                                                         
  

   
                              (3.21) 

where        is a white noise with a variance of  . PMF1 and PMF2 are shown in 

Figures 3.1a and 3.1b, respectively. The white noise represents internal process 

uncertainty. The nonlinearities are added to increase the problem’s complexity and make 

the estimation problem more challenging. Figure 3.2 shows a Bayesian network 

representation of the plant example. This structure includes three types of causal 

structures: common cause, common effect, and chain causation relationships.  

Figure 3.1 shows the true underlying distributions of the nodes. To simulate 

scarce information condition, we take only 100 random samples from the root nodes (  

and  ) probability mass function, as shown in Figures 3.1a and 3.1b. The 100 samples are 

taken simply by using a pseudo‐random number generator. First, a number   is picked up 

randomly from a uniform distribution defined on the support of (0,1),       . This 

number plays the role of a cumulative probability value.   is then transformed to the 

original random variable (  or  ) space by utilizing its inverse cumulative probability 

function,    . For example for random variable  ,  

                                                                   
           (22) 

 

where    and   are the  -th random numbers taken from the distribution of   and        

respectively.   
   and   

  can be derived from the discrete probability distributions 

defined in Figures 3.1a and 3.1b. Figure 3 illustrates this approach. The corresponding 

values for the child nodes are then calculated. This calculation can be either performed 

using the true conditional probability tables of the network (if available) or by generating 
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samples from the set of governing equations and constructing the corresponding discrete 

probabilities. Randomly selected samples from   and   are converted to  ,   and   

using their related class values where seven preset states are used for discretization of 

these child nodes (Figures 3.1c, 3.1d and 3.1e). This set of 100 samples constitutes the 

basis for our probability distribution estimation. 

The first step in training our Bayesian network to properly do inference under the 

rare event regime is to complete marginal PMFs for the root nodes and conditional 

probabilities for the rest of the network. Although these tasks share the same theoretical 

background to be implemented, computing the conditional probabilities, as implied by 

our generative statistical approach, requires to first calculating discrete joint PMFs. These 

multidimensional arrays of multivariate probabilities must further be converted to 

conditional probability tables of the child node by being divided by the marginal 

probabilities of the parent nodes.
36

 

As clearly shown in Figure 3.1, when the number of samples is not large enough, 

the so-called rare states are not likely enough to appear in the historical data. This fact is 

particularly in accordance with the vector form of Chebyshev’s inequality
33

 ,  

                                                               
 

         (3.23) 

where     is a   -dimensional random vector with mean     and       
      

   is the 

variance vector.       is the vector’s norm. This relation states that the majority of data are 

close to the mean of the distribution. More precisely, in a general probability distribution, 

the probability of a random number being equal to   standard deviations away from the 

mean of the number is less than or equal to 
 

   . The following example helps to explain 

this. 
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Figure 3.1: Actual probability distributions (upper row) and probability distributions based on 

randomly selected 100 samples (lower row). 
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Figure 3.2: Bayesian network of the example. 
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Figure 3.3: random number generation from a given cumulative distribution function. 
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To see the effect of the sample size on observing the data from low probability 

regions, consider a one-dimensional case where we are interested in estimating the 

probability of obtaining at least one sample beyond 13 standard deviations or     

variance far from the mean of a general univariate distribution in 100 trial, named event   

here. The probability of getting such a sample in one trial, called     is:  

                                                                   
 

   
 

If the maximum value of 
 

   
 is taken as             is defined by a multinomial 

distribution: 

                                         
    

      
    

 

   
 

   
       

where     is the complement of event  ; that is none of the samples are observed within 

13 standard deviations from the mean. This result suggests that, even by taking the 

supremum of the inequality above, the probability of observing event   in 100 samples is 

less than it not having been observed. For elliptical distributions such as normal 

distribution this probability is even smaller. Conversely, if we use 1,000 samples      

will reach 0.997. This example shows that with an inadequate sample size, some possible 

states that possess an infinitesimally non-zero probabilities are not visited in the data at 

all; therefore their probabilities are considered to be empirically zero by traditional 

statistical approaches. As suggested by Chebyshev’s inequality, for random vectors this 

situation is even worse, and this makes it impossible to train complete arrays of 

multivariate PMFs. 

In fault detection applications, Bayesian inference should be feasible for all 

possible states, including the rare states; therefore such zero empirical probabilities are 
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problematic. For instance, assume that we intend to perform Bayesian inference 

(backward or forward) when a rare state is introduced to the network. When conditional 

probabilities of other states given the rare state are undetermined, the inference cannot be 

made.  

Estimating Probabilities 

To address the important issue raised above, the method presented in the previous section 

is first applied to the univariate root nodes of the example system, i.e.,   and  . Figures 

3.1a and 3.1b compares the true and data-based distributions of random variables   

and  . For an efficient estimation of rare states probabilities we initially need to apply the 

method with different values of  . The value, which gives rise to either maximum 

likelihood of the model’s complexity (MLE) or maximum likelihood of the data (MAP), 

is used to estimate the model’s parameters (probabilities). 

Figures 3.4 and 3.5 compares the MLE and MAP estimates for the model’s 

complexity of   and  , respectively. Obviously because of applying a non-conjugate prior 

normal distribution      with mean 2,      is smaller than     . This can be thought 

of as the effect of our prior assumption that a simple second degree model can generally 

be a good fit for the many elliptical distributions, as suggested in   and  . This prior 

assumption then is updated when additional information from the data is incorporated in 

the Bayesian parameter estimation approach. As a consequence of multimodality of the 

true PMF of  , higher orders of moment functions (complexity) must be employed to 

model   data compared to that of   . Figures 3.6a and 3.6b compare MLE and MAP 

estimates of   and   with their true PMFs.  
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An important fact to note here is that the likelihood functions stay constant for a 

wide range of  . This suggests that for the cases that computational tractability of the 

algorithm is the limiting factor, the lowest order that satisfies some likelihood threshold 

can be used to model the probability mass function. 

 A similar approach is utilized to estimate the joint and conditional probability 

tables. First, the joint PMF of each set parents and child nodes are estimated with the 

same procedure outlined in Eqs.(3.6) and (3.7) and using the multivariate moments and 

moment functions with the form as of Eq.(3.9), Then normalizing the probability array of 

the child node given the states of its parents will lead to the entire set of conditional 

probabilities required by the network. For example 

          
        

      
 

Figure 3.7 illustrates a comparison of the true and estimated conditional 

probabilities of   given   and   with the ME estimated probabilities. It can be observed 

that the complete set of probabilities are reconstructed by constrained maximum entropy 

method, using the information collected from entire dataset, over the states where initially 

considered to have zero probabilities. Figure 3.8a shows the Bayesian network trained 

using constrained maximum entropy method. We use Netica
34

  software for Bayesian 

analysis and network visualization. 

Confidence Intervals for the Estimated Probabilities 

     Since the solution to the nonlinear programming of Section 3.2.3 results in point 

estimates of the probabilities for any given dataset, it cannot be used to find the 
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confidence intervals of the estimated probabilities. To derive confidence intervals for the 

estimated probabilities, here we use a resampling method called the Jacknife or 

(leave‐one‐out procedure) described in
35

 . In this method, a distribution for the estimated 

probability is calculated by performing an optimization procedure multiple times, each 

time with a different sample set derived by systematically leaving one of the sample 

points out. Each resampled data give rise to a different estimate for the probabilities of 

X’s states. The mean and variance of the estimated probabilities is then found by 

                                                                
 

 
    

 
                                        (24) 

                                                       
   

 
           

                (25) 

where    and        refer to the mean and standard deviation of the estimated probability 

   and     is the estimated value of   using the dataset without the j-th observation. 

Characteristic statistical parameters of these distributions (mean and standard deviations) 

are listed in Table 3.2. To calculate these quantities, the original dataset of 100 samples 

are used. Each distribution indicates how reliable the estimated parameters are. Assuming 

the estimator is unbiased, that is    is equal to the true value of  , the narrower 

distributions (smaller relative standard deviation) indicate that the mean value suggested 

by the distribution is more likely than the actual value of the parameters under 

investigation. It can be shown that such narrow distributions are associated with larger 

sample size; however, the achievement of a narrow distribution with relatively small 

sample size can be a sign of the consistency of the estimation method; that is, with 

increasing the sample size the estimated parameter converge to its true value. It should be 

noted that in this research the distributions are defined on a bounded support, as the  
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Table 3.2: Mean and standard deviations of the estimated probabilities for the random variable  . 

 

 

 

  

      

Parameter Mean Standard Deviation 

P1 0.0104 2.8053x10-7 

P2 0.1676 0.0057 

P3 0.7320 0.0062 

P4 0.0460 0.0013 

P5 0.0060 1.9348x 10-6 

P6 0.0376 0.0023 

P7 0.0004 2.4674x10-8 
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parameters under estimation are probabilities by their own and can only take values in 

[0,1]. It should be noted that, in addition to studying the behavior of the estimated 

parameters for different input training data, the outlined approach can be used to avoid 

uncertainty due to the randomness of the small datasets, i.e. while two different small 

datasets might give rise to noticeable discrepancy between the results, this resampling 

technique can present more reliable estimation of the parameters by aggregation. 

Therefore for the applications where a single value variable is required (as the case is 

here), the mean of the distribution can be used as an alternative. For more detail the 

reference
35

 may be helpful. 

Bayesian Network Risk Analysis 

Once the complete sets of marginal and conditional probabilities including those related 

to rare events are estimated using the ME method outlined in section 3.2, the Bayesian 

network enables us to probabilistically model the system’s behavior using Bayes’ rule
32

 . 

Generally, there are two kinds of Bayesian inference, forward and backward, depending 

on how the updated network (with posterior probabilities) is treated as the evidence is 

introduced to the network 

Predictive (forward). In this case, the flow of information is from parent 

nodes/variables to child nodes/variables. Probabilities of the child variables are updated 

given the state of their parent(s). This type of inference is especially important to develop 

abnormal event propagation scenarios and to find the most probable abnormal 

consequences encountered within the system and their failure probabilities through risk 

assessment procedures. Figure 3.8b shows the updated network once an example 
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evidence indicating that   is in the state   , is introduced. Such evidence along with the 

conditional probabilities and the Bayesian network update rules
36

  updates the 

probabilistic belief about each variable’s states, including those which have not shown up 

in the historical data. Such analysis enables the analyst to draw inferential information 

about the system’s tendency to deviate from its normal operation state, particularly those 

variables that show more potential to be at a dangerous abnormal state. In this case, once 

the evidence   in    is given to the network, the network shows a large deviation in its 

most closely connected child node,  , and a weaker deviation in  . However, as also 

implied by Eq.(3.21), these deviations do not affect   strongly. We will later introduce 

an index to quantify and compare these deviations. 

Diagnostic (backward).  In this case, the flow of information is from children 

toward parents. A change in the states of a child variable updates its parents’ states using 

the Bayesian network belief propagation rules, and conclusions can then be made about 

the most probable causes of the observed anomaly. Such an analysis is mostly used in 

real-time analysis for fault detection and isolation. 

In both cases, making decisions about the abnormal states (which in most cases 

are the same as rare states) is of critical importance; that is, states of most interest, 

whether in risk assessment or fault detection, are exactly those states which are poorly 

reflected in the data due to their small probabilities (which are indeed desirable from the 

scope of process control and safety, indicating an efficient safety system). To tackle this 

issue, the proposed constrained maximum‐ entropy algorithm is employed to estimate 

these probabilities. Figure 3.8c illustrates the updated network given an evidence in the 

node  .  As can be seen, the flow of information updates the entire network, giving a  
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Figure 3.4: (a) Likelihood and (b) prior and posterior probabilities versus the model’s complexity 

level, O, for node  . 
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Figure 3.5: (a) Likelihood and (b) prior and posterior probabilities versus the model’s complexity 

level, O, for X. 
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Figure 3.6: Actual, based on 100 samples, MLE-estimated, and MAP-estimated probabilities. (a) 

Node  . (b) Node  . 
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Figure 3.7: Actual and ME-estimated conditional probabilities for node W given (a) both parent 

nodes   and   in their lowest states, and (b) both parent nodes   and   in their highest states. 

 

 

 

 

 

 

 

 

 

-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

W

P
(W

|Y
,Z

)

 

 

-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W

P
(W

|Y
,Z

)

 

 
Actual

ME Estimation

Actual

ME Estimation

(a) (b)



101 
 

 
 

 

Figure 3.8: Bayesian network of the example system based on the ME-estimated PMFs. (a) 

Normal operation network. (b) Predictive inference (evidence is for  ). (c) Diagnostic inference 

(evidence is for W). 
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Figure 3.9: Diagnostic Bayesian inference based on 1 million samples and the ME-estimated 

PMFs. (a)  . (b)  . 
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clue about the most probable reasons to the observed evidence. In such cases, partial 

predictive inference can also be conducted through updating the probabilistic belief about 

child nodes located at downstream of the root nodes, implying how the deviation 

occurred at the upstream root nodes affects the nodes which do not share a causal path 

with evidence node. Figures 3.9a and 3.9b compare the result of such diagnostic Bayesian 

inference for the nodes   and   derived by actual model and ME estimation method. This 

plot indicates how accurate the estimation with only one hundred samples is compared to 

a sample with 10,000 time larger size. 

Risk Quantification 

Since the variables in the Bayesian network context are treated as random 

variables, one direct way of studying their behavior is to consider their (marginal) 

probability distributions. To quantify the changes in marginal probabilities caused by the 

evidences and identify the node(s) that undergo the most significant change, we use a 

probability distance measure called Kullback-Liebler divergence (KLD) or information 

gain
37

 . This measure reveals information about the relative entropy of two probability 

distributions defined over the same set of states, and therefore indicates how different two 

marginal probabilities are compared to each other: 

                                                      
   

      
       

  

       
  
             (3.26) 

where   and   are the prior and posterior probabilities of node    with   states, 

respectively. To measure the most significant deviations in the network, we then use the 

relative Kullback-Liebler divergence (RKLD)
 
. For a node   , the      is defined as:       
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                                          (3.27) 

If a prior probability of a state is 0, then its corresponding term in KLD expression is 0, 

since           .   Figure 3.10 shows a comparison of the relative KL divergence 

values. As shown in Figure 3.10a, based on the relative KL divergence, moving   to its 

lowest state causes the largest changes in nodes   and  , respectively. This prediction 

makes sense, since   is connected to   through  . 

The same procedure is applied to identify the most probable cause to an 

abnormality observed in node   by backward Bayesian inference (Figure 3.8c). Since 

deviation of the node   from its normal operation PMF indicated in Figure 3.10b is more 

than that of the node  , the former is the variable which has most likely led to the 

observed anomaly in node  . It is important to note that the prior probability of each 

node has a strong effect on its updated probability. In other words, more diffuse PMFs 

(larger variance) are more likely to have caused the abnormal states, as confirmed by our 

example. The generalization of this procedure to larger and denser is straightforward; the 

same principles for reconstructing the probabilities will apply regardless of the size of the 

problem or its degree of complexity. 
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Figure 3.10: RKLD values for the nodes. (a) Predictive inference. (b) Diagnostic inference. 
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3.4. Conclusions 

This chapter presented a method of estimating the probabilities of states with no observed 

data (rare states) of a multivariate probability distribution with finite or countable number 

of states. The method maximizes the Shannon’s information entropy subject to 

constraints imposed by empirical moments of the sampled population. At the same time, 

two approaches to select the optimal constraints are also investigated.  This method is 

especially beneficial as the model’s parameters (PMF probability values) are to be 

utilized to train directly Bayesian networks, where discretized random variables are 

usually preferred. Advantages of this method over other probability estimation techniques 

are as follows. Firstly, since the information content of individual sample points are 

compacted in the form of moments, larger sample sizes do not affect the speed of 

convergence. Second, as no limiting assumptions are made on the dependence structure 

of the domain variables, it is capable of modeling highly nonlinear dependence structures. 

Third, the MLE and MAP criteria to determine the optimal level of model’s complexity 

enables one to use the highest possible flexibility in modeling while avoiding over-fitting. 

Because of these features, the method provides reliable probability estimates for regions 

outside the observed region, where most of the risky events are likely to occur. Since the 

method is primarily developed to estimate discrete multivariate probabilities and 

therefore is suitable to calculate conditional probabilities, it is particularly advantageous 

when combined with Bayesian networks. This combination allows the user to calculate 

the probability of abnormal event propagation, where an abnormal situation in one 

component of the systems increases the chance of abnormal situation in another 

component. However, although the Bayesian network allows decomposing the high 
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dimensional multivariate distributions, leading to tractability of the method, care must be 

taken when working with overly dense networks and/or high number of states which may 

significantly increase the number of variables and the resulting computational cost. 

Finally, the estimates can be used to perform risk assessment and fault detection 

effectively, e.g., through Bayesian networks. 
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Chapter 4: Rolling Pin Method: Efficient General Method of Joint Probability 

Modeling 

 

4.1. Introduction 

Complex real world systems with a great deal of uncertainty often cannot be properly 

represented by deterministic models, as these models are conditioned approximations of 

reality. Deterministic models only provide point-wise estimate predictions with no 

information on the uncertainty of their predictions and do not provide a systematic way of 

accounting for noise and stochastic disturbances. For such systems, probabilistic 

modeling techniques have become more popular in recent years.
1 

Joint probability distributions are key mathematical elements in modeling 

uncertain knowledge and stochastic systems. They assign a probability (or probability 

density) to each state (or point) in the multidimensional space of the domain variables.
2
 A 

probability distribution may be used to make predictions about the likelihood of a query 

state or to perform inference about the query variables as evidential knowledge becomes 

available. Also, joint probability distributions over parameters with uncertainty can be 

used to conduct parameter estimation.
3
 These models are particularly useful in 

performing predictions under uncertainty.  The uncertainty can be an intrinsic property of 

the systems, can be due to the lack of adequate knowledge about the systems, or a 

combination of the two. 

The need for a reliable method of estimating joint probability distributions has 

motivated numerous studies on this topic in the past few decades.
4
 The existing methods 

of joint probability estimation can be divided into three main groups: parametric 
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methods,
5
 nonparametric methods,

6
 and combined parametric and nonparametric methods 

(semi-parametric methods).
7
  

The most simplistic parametric method is to use a pre-defined multivariate 

probability distribution such as a multivariate elliptical distribution to describe the 

observed data. Generally, these parametric distributions are computationally favorable in 

terms of training their parameters and sampling.
8
 However, the flexibility of such 

distributions in modeling real-world systems is quite limited.
9
 Another widely-used 

parametric method is the parametric copula method, which decomposes a joint 

distribution into a dependence structure represented by the copula and univariate 

marginal distributions of the domain variables.
10

  The standard parametric copulas are 

very good at modeling nonlinear relationships that are monotonic and they do this by a 

relatively small number of parameters. However, they are unable to describe joint 

probability distributions of variables with non-monotonic relationships. Furthermore, 

finding the true dependence structure may not always be easy and in many cases there is 

no conventional parametric copula corresponding the system’s true dependence structure. 

The problem can be more severe when the pairwise dependence structures of the 

variables are not the same. Another parametric method is the moment-based approach, 

which presents a highly flexible way to model arbitrary joint distributions from the data 

moments.
11,12

 Despite such flexibility, the method suffers from high computational cost 

when system’s number of dimensions grows.  

The non-parametric methods of probability distribution estimation assume no 

predefined model for the observed data; rather they construct the distribution function 

using the simple functions assigned to each point in the dataset. The histogram methods 
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is the simplest method of this kind where the density value of each state is calculated 

using the data. In addition to inaccuracies due to discretizing the attributes, the histogram 

method may suffer from very high number of density values, which increases 

exponentially as the number of variables increases.
13

 The kernel density is an example of 

a continuous nonparametric model.
14

 It provides high flexibility, but similar to the 

moment-based approach it can be computationally expensive and its bandwidth matrix 

(of the smoothing parameters) becomes unstable for high dimensional systems.
15

 For this 

reasons the kernel method is prescribed for low to moderate number of dimensions, with 

an upper limit of six. Finally, compared to the parametric methods, non-parametric 

methods have a slower convergence rate to the actual probability distribution, as the size 

of training data increases. For example, the convergence rate of the Gaussian kernel error 

to zero is           which is lower than that of parametric methods         where   is 

the number of training data. 

Considering the drawbacks described above, semi-parametric methods that 

combine the computational tractability of the parametric methods with the flexibility of 

non-parametric methods, have been proposed. Olkin and Spiegelman in their pioneering 

work
16

 proposed a semi-parametric distribution as a weighted linear combination of 

parametric and non-parametric densities, where the weights were estimated using the 

maximum likelihood principle. Another semi-parametric method is a combinatorial 

copula method, where a parametric copula is combined with a non-parametric method of 

estimating the marginal densities, e.g. by the kernel method.
17

 This method models 

nonlinear monotonic relationships satisfactorily, however because of the limitations of 
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the available parametric families of copula, it fails to present reliable distributions for 

non-monotonic and complex dependence structures. 

This chapter presents a novel efficient method of estimating joint probability 

distributions of continuous random variables with non-monotonic or monotonic 

relationships. As the backbone of the method is a set of monotonization transformations 

that ‘roll out’ the relationships, the method is named the rolling pin method. The rolling 

pin method allows one to estimate joint probability distributions when the actual causal 

structure of the attributes is unknown or extremely intricate to be accurately determined. 

This method aims at addressing the common drawbacks of the existing joint probability 

estimation methods, as well as limitations of the ordinary parametric copula method, as 

discussed above. The rolling pin method offers the following advantages over the 

existing joint probability estimation methods: 1) it doesn’t require any knowledge of the 

causal structure among variables; 2) unlike conventional copulas, it is capable of 

modeling non-monotonic relationships between variables; 3) it enables the user to model 

joint probability distributions over multiple (more than two) random variables with the 

same parametric family of copula, regardless of possible differences in joint probability 

dependence structure of each pair of variables; 4) it  may be programmed such that 

unknown joint probability dependence structures of the variables is modeled with a 

known parametric copula; 5) it is computationally efficient, as the joint probability 

distribution is fully specified with        parameters, where   denotes the number of 

random variables;  6) its estimated probability densities may be used to quantify the 

probability of rare events (i.e., events having no data available in the historical data), as 

well as compound (multivariate) risks, where a rare event in a variable may lead to a rare 
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event in another variable. This is possible, as the derived continuous probability 

distributions can be defined and evaluated over the regions (rare states) which historical 

data lacks information on.
11

  

The rest of the chapter is organized as follows. Section 4.2 provides some 

preliminaries. Section 4.3 describes the rolling pin method. It also compares the rolling 

pin method and the conventional parametric copula method. Section 4.4 presents the 

application of the rolling pin method to two mathematical and process examples. Section 

4.5 includes concluding remarks. 

4.2. Preliminaries 

Let             denote a vector of continuous random variables with an unknown 

dependence structure in a  -dimensional space of real numbers. Each pair         

                 is assumed to have an arbitrary relationship. The objective is to 

construct a joint probability density function of  ,                given the 

observed dataset  . The joint density function   represents a mathematical model of a 

stochastic system that has   random variables. In this chapter, random variables are 

shown by capital letters and their numerical values by small letters. 

In many real-world applications, variables describing systems often have different 

orders of magnitude.  Since this is a potential source of inaccuracy, to address this 

problem, as a standard practice throughout this chapter, we obtain normalized variables 

corresponding to   ’s using 

                                                                   
          

        
    (4.1)    

 where       is the empirical mean of    defined as  
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    (4.2) 

and         denotes the empirical variance of     

                                                      
 

 
             

 
   

    (4.3) 

where   is the number of samples of      for    . Therefore, samples of    has a mean 

value of   and a variance of 1. Throughout the rest of this chapter it is assumed that 

variables are already normalized using Eq.(4.1). 

4.2.1. Modeling Joint Distributions Using Copulas   

A copula is a multivariate probability distribution of a set of random variables that have 

uniform univariate marginal probability densities. Copulas are employed to describe the 

dependence structure of random variables. According to the Sklar's Theorem,
18

 every 

multivariate joint distribution can be written in terms of univariate marginal distributions 

and a copula. Indeed, the main strength of copula density estimation is that it enables one 

to decompose and describe a joint probability distribution into univariate marginal 

cumulative distribution function (CDFs) of random variables and a dependence structure 

(copula function) of the variables.  Parametric copulas have parameters, which allow one 

to adjust the strength of dependence among random variables. Copulas may be utilized as 

a basis to model dependence structures based on Sklar’s theorem: 

Theorem 1.
18

 For every multivariate joint probability distribution            

                   there is a copula function                such that 
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        (4.4) 

where    

            is the marginal quantile function (inverse cumulative distribution 

function (CDF)) of random variable   . If the margins of   are continuous, the copula 

function will be unique, otherwise it will be uniquely defined 

on           
              

   . In view of this, copula may be thought as a joint 

cumulative probability distribution function over the uniform random 

variables     
      

 distributed as       , where        is the uniform probability 

density function between   and  . Every copula has the following basic properties:
19 

 It is a grounded function; i.e.,                            

                   .                                                                                         (4.5) 

 If                                                                  (4.6) 

 If the set of random variables                 are derived by strictly increasing 

transformations of        , then     . In other words, the copula (dependence 

structure) is preserved under strictly increasing transformations.  

The ability of a  -dimensional copula to decompose a joint probability 

distribution into a   univariate marginal CDFs of random variables and a dependence 

structure in terms of the copula function allows one to exactly reconstruct a joint 

probability distribution given its true copula and   univariate marginal CDF 

functions,    
         

                  : 

                                                          
          

      (4.7) 

As a result of this decomposition, one can model the marginal distributions 
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(   
          

    ) and the dependence structure (represented by the copula) 

separately; i.e., the parameters involved are adjusted independently to model the marginal 

distributions and the dependence structure. This procedure allows one to model highly 

nonlinear joint probability distributions by adjusting a few parameters.  

There are many techniques to model univariate marginal distributions. In many 

practical applications, parametric probability distributions (such as the Gaussian and 

gamma distributions) offer a good representation of the data behavior. More complex 

marginal distributions can be non-parametrically defined by an empirical CDF:  

                                    
                        

 
 

 

 
        

      (4.8) 

where      is the indicator function and    denotes the  -th sample of  . As an 

alternative, the kernel distribution function can be used to obtain a smoother CDF that is 

extendable to the unobserved regions 

                                                        
 

 
 

 

 
   

    
    

 
   

 

  
 (4.9) 

where          is the CDF estimated by the kernel method,      is the kernel probability 

density function, and   is a scalar called the smoothing parameter or bandwidth. The 

smoothing parameter is calculated through minimizing an error measure such as the mean 

integrated squared error or the mean integrated absolute error.
20

  

The copula density is the basis for the definition of the joint probability density of 

  

                                                            
            

       
 (4.10) 

                                             
          

         
    

 
    (4.11) 
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where            ,               and    
           denote the copula 

density, joint density and marginal density functions, respectively.  Once all marginal 

CDFs are estimated, they can be used in combination with a copula function to generate a 

joint probability distribution.  It is important to note that the final joint probability 

distribution is as dependent on the choice of copula function as it is on the marginal 

CDFs; that is, different copula functions give rise to totally different joint probabilities 

given the same marginal CDFs. There are plenty of choices for the copula function. Well-

known parametric copulas are based on random processes (e.g., Marshall-Olkin family), 

defined using the dependence structures of widely-used joint probabilities (e.g., elliptical 

family), or developed from the so-called generator functions (e.g., Archimedean family). 

Non-parametric empirical copulas are defined in a similar way as in Eq. (4.6) .
21 

Parametric copulas are becoming a popular and standard framework for 

multivariable probabilistic modeling, mainly because they are easily formulated, 

parameterized and sampled. However, they suffer from the following important 

limitations: 

1.  When the objective is data-driven construction of a joint probability distribution, 

while its actual dependence structure unknown, the availability of a strategy to 

systematically choose the right copula from the wide range of parametric copulas is 

of critical importance. In the absence of such a strategy, there is no guarantee that a 

chosen copula replicates the actual dependence structure accurately, particularly over 

the regions where no sample is observed, this is where the tail dependence behavior 

of copulas play its determining role. 
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2. There is an ever-growing number of different parametric copulas covering different 

types of dependence structures. Despite this progress, every possible dependence 

structure which underlies the data cannot be captured by the existing copulas yet.  

3. While copulas can model highly nonlinear monotonic relationships, the most serious 

problem with the conventional parametric copulas is that they are unable to capture 

non-monotonic relationships. This problem in most part is because the commonly-

used measures of correlation, which are used to quantify the strength of dependence 

between two random variables, are unable to differentiate non-monotonic dependence 

from independence. 

4. In general, there may exist different dependence structures between each pair of 

variables. Therefore, in such cases assigning a unique copula for modeling random 

vectors (   ), which applies the same dependence structure to every pair of 

variables, is not technically correct. Although the vine copula method has been 

introduced to circumvent this problem by factorizing multivariate copulas,
22

 it has its 

own drawbacks including high computational cost and the restrictions imposed by the 

ordinary parametric copulas discussed above. 

Addressing these fundamental issues in copulas is a major motivation for developing the 

rolling pin method. 
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4.3.  Rolling Pin Method 

4.3.1. Variable Monotonization 

As conventional parametric copula families in their original form are unable to describe 

joint probability distributions of variables with non-monotonic relationships, a variable 

transformation is proposed.  

Definition 1. Continuous variables     and    are said to have strictly-increasing 

monotonic relationships if 

                                             
    

   

   
                        (4.12) 

 where    
 denotes the domain of      

Monotonization transformation. Consider continuous variables          with 

arbitrary (monotonic or non-monotonic) and generally unknown relationships. The 

monotonization transformation transforms these variables to new variables         that 

have strictly-increasing monotonic relationships to   , a reference variable that is 

selected systematically from        . The monotonized variable    is defined as:  

                                                                                    (4.13) 

where           is a parameter, called the monotonization parameter of variable   . 

Obviously,       yields        and      yields      . Furthermore,            

      . Considering this, we simply set     . A sufficiently large value of   , results 

in a    that has an increasingly monotonic relationship with   , regardless of the type of 

the dependence of    on   . This statement is always true for     , as       . Once a 

sufficiently large value of      is found, an appropriate parametric copula can be used 

to model the pair        .  
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Although the monotonization transformation guarantees monotonicity between 

each    and   , to model multivariate (   ) probability distribution functions using 

parametric copulas, we first need to prove that all pairs                         

have monotonic relationships. The following theorem establishes the sufficient condition 

for having such relationships.   

Theorem 2. If the pair    and    and the pair    and    have strictly-increasing 

monotonic relationships, then the pair    and    have a strictly-increasing monotonic 

relationship. 

Proof.  According to Def.1 and Eq.(4.11): 

                                   
   

   
 

   

   
      

   

   
 

   

   
              

       (4.14) 

where    
 is the domain of the reference variable. These imply that: 
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(4.17) 

Eq.(4.15) with Eqs.(4.12) and (4.14) implies that        
, 

                                                                       
   

   
     (4.18) 
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4.3.2. Rolling Pin Distribution 

In this section, the monotonized variables defined earlier will be utilized in combination 

with the copula method to develop probability distributions that are capable of modeling 

non-monotonic relationships and complex dependence structures. 

Let the vectors of continuous random variables              and   

           be defined according to Eq.(4.1) and (4.13) and the vector of optimal 

monotonizing parameters be                   which assures the pairwise 

increasingly monotonic relationships between the components of  . Note that the 

relationship between   and   is one-by-one and is therefore invertible. The functionality 

of every pair         can take on any unknown form. 

As the relationship of every pair         is strictly-increasing monotonic, one can 

model accurately the joint CDF of   using an appropriate copula function: 

                                                    
          

      (4.19) 

where    
      

 are the marginal CDFs of  , and   denotes a parametric copula.  

Eqs.(4.13) and (4.19) provide the mathematical basis for modeling arbitrary (including 

non-monotonic) relationships among the components of   using copulas. Let   

                          and    be the Jacobean matrix 
  

  
.  Without loss of 

generality, assume       (i.e.,         are arranged such that the last variable is the 

reference variable). Then, for the linear monotonization transformations of Eq. (4.13): 
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and 

                                                                   
             

which confirms that the monotonization transformations of Eq.(4.13) are one-to-one.   

Because of this one-to-one property and the differentiability of the 

monotonization transformations, the following equality holds: 

                                                               (4.20) 

Given Eq.(4.20), the probability density function of the random vector  ,    is derived as 

follows: 

                                 
    

     
          

         
             

    
                 

     

             
    

    
        

   

       (4.21) 

where                      and    denotes the copula density function. It will be 

shown later that in most cases a specific type of copula can be used as   without any need 

for a systematic way to explore the space of the available parametric copula families. 

However, such a systematic way will also be presented in Section 4.3.3.4, if a greater 

level of accuracy is needed.  

As the monotonization transformation addresses the major shortcomings of 

conventional parametric copulas, the rolling pin method is a powerful tool in modeling 
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complex, nonlinear and non-monotonic continuous joint probability distributions for the 

following reasons: 

 The rolling pin method resolves the most important drawback of the conventional 

parametric copulas in a very natural way. As conventional parametric copulas can 

capture monotonic interactions only, the monotonization step of the rolling pin 

method first transforms the original variables to monotonized variables, utilizable by 

conventional parametric copula functions. Such a copula,  , may be either directly 

transformed back to    through Eq. (4.20) or can be sampled first and the samples 

will be transformed then back to the samples of the original random vector using the 

inverses of the invertible monotonization transformations. More details on sampling 

from copulas can be found in Ref.
23

 

 The rolling pin method benefits from the low level of computational complexity 

borrowed from the parametric copulas. In addition to the advantage made by the 

copula definition in reducing the number of parameters, many parametric copulas can 

be trained using by a small number of parameters. For example, elliptical copulas can 

be defined using the pairwise (rank) correlation coefficients of the variables. For 

example, Spearman’s rank correlation for elliptical copulas is defined as:
24

  

                                                    
       

    
 

        
        

  
    (4.22) 

This implies only   
 
  

      

 
 correlation parameters are required for completing the 

correlation matrix of the parametric copula  . In addition to this number,       

parameters of the vector of monotonizing parameters    and    smoothing 

parameters (if the kernel method is applied for modeling marginal CDFs. This 
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number will be     if Eq.(4.6) is used, where   is the number of states) have to be 

estimated. In this case, the total number of  
          

 
    parameters enables a 

rolling pin distribution to model many non-monotonic behaviors and dependence 

structures.  

 For the cases when                can be set as close to 1 as possible, the 

linearity of    with respect to    (and therefore each   ) leads to the idea that pairwise 

selection of random variables                     may be treated by an 

approximate dependence structure, which is the dependence structure of random 

variables               (equivalently        
       

 ), where  

                                                             
      

    
    (4.23) 

                                                        
      

    
         (4.24) 

                                            
      

    
 

 

         
      

    
 

 

    (4.25) 

                                                           
          (4.26) 

Eqs. (4.23)-(4.26) suggest that as      approaches 1, the effect of    is gradually 

eliminated from   .  On the other hand, since the random variables       
 and       

 

are uniformly distributed as        and behave much alike each other because of the 

small effects of    and   , the dependence structure of               and therefor 

       
       

  are close to that of        . Therefore, the dependence structure of 

        may be approximated by a symmetric copula such as the comonotonicity 

copula                or the Gaussian copula. As a result, whatever dependence 

structure of         is, it can be approximated by a simple copula as above. The 
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advantage of such an approximation is fourfold.  First, there is no longer a need for a 

systematic way to explore the space of possible copulas to select the most appropriate 

candidate. Second, a unique multivariate copula (   ) such as the comonotonicity 

copula or Gaussian copula can be applied to model the joint probability distribution 

of random variable   and later  , with less concern about the difference between the 

pairwise dependence structures. Third, such simple parametric copulas can be easily 

simulated or sampled. Fourth, unknown and new dependence structures without an 

exact closed-form mathematical formula can be modeled by this method. 

The next section presents four approaches of estimating an optimal vector of 

monotonizing parameters,   .  

4.3.3. Selection of      

Although it is obvious that in general         should be large enough to ensure strictly-

increasing monotonic relations between the components of  ,          should not be 

unnecessarily large. As    approaches 1,    converges to   ; that is, the relative 

information contribution of    decreases as    increases, and with     ,       . The 

loss of information will be more serious if the memory assigned to  store values is not 

adequate to include all meaningful digits of    and therefore it is likely that     is 

eliminated from    as a result of the round-off processes and mathematical operations 

performed on data. Hence, the selection of appropriate values for the monotonizing 

parameters is a trade-off problem in which increasing the monotonicity is accompanied 

by the information loss. Remember that the transformation decreases the contribution of  
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   by       . Therefore, in a decimal system, the number of digits shifted 

rightward,    
, depends on   : 

                                                      
                   (4.27) 

where        rounds   to the nearest integer less than or equal  . It indicates that, for 

example, when     is 0.98,    
 is 2 and all digits of    will be shifted rightward by two 

digits after being multiplied by       . This argument provides a mathematical basis 

for calculating the information loss due to the round-off process.  

Let   and    denote the number of subunit digits allowed by the computer being 

used and the number of meaningful subunit digits of   . The Information loss measure    

is defined as 

                                                                      
   (4.28) 

when        no meaningful digits of the original variable is eliminated as a result of the 

monotonization process, and when     ,    digits are irreversibly lost in the 

transformation.    along with some criteria will be utilized in the next sections to specify 

each     .  

4.3.3.1. Selection of      based on Linear Correlation Coefficient 

The linear (Pearson) correlation coefficient   of two random variables   and   is defined 

as 
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                   (4.29) 

Assuming        and        are non-zero,   is a measure of how linearly correlated 

two variables are. According to the definition of   ,          :  

                                                             
          

                 
     (4.30) 

Since                 and                               , and 

                   according to the definition of    in Eq.(4.1)], Eq.(4.30) becomes 

                                                 
               

            
 
               

     (4.31)                                    

where                         .          is a strictly-increasing continuous 

function of   , and approaches 1 as    increases  to 1 (Figure 4.1a). Eq.(4.31) suggests 

that          depends on      and    only, but not on the exact relationship between the 

variables.  

This measure,         , is used here to define a criterion for setting    such that 

the pair         have a strictly-increasing monotonic relationship. Let    represent the 

lowest value of          that assures the pair    and    have a strictly-increasing 

monotonic relationship. Using Eq. (4.31), then we can calculate the value of    , denoted 

by     , that is given by   : 

                                
     

   
      

   
    

    
  

   
     

        
         

 

    
         

           
   

    (4.32) 

Eq. (4.28) can be used to find each      that minimizes the information loss while 

keeping the degree of linearity of the relationship of    and    high enough; that is, a 

large enough    (e.g.        ) is selected such that     remains negative. For example,  
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Figure 4.1: (a) Correlation coefficient as a function    for different values of    ranging from -

0.9 to 0.9. (b) Derivative of the correlation coefficient for different values of   . (c)         as a 

function of   . 
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when       , for          and         , Eq. (4.32) yields           and      

    , respectively. When     and     , the corresponding   s will be   and  , 

repectively. It implies that   and    allow achieving        without information loss 

due to the monotonization. For cases when these conditions (       and      ) 

cannot be satisfied at the same time, a bi-objective optimization should be performed, 

where 

             
  

               

            
 
               

 
 

                    (4.33)        

                                 

4.3.3.2.   Selection of      based on the Derivatives of Relationships 

As discussed in the previous section, the linear correlation coefficient is a measure of 

how linearly    and    are correlated. Being a covariance-based function, the correlation 

coefficient is very sensitive to non-monotonicity of the relationship between the two 

variables; a small degree of non-monotonicity gives rise to a near zero value of the 

correlation coefficient (Figure 4.1b). According to Eq.(4.31), the correlation coefficient is 

an increasing function of   ; i.e.,  

       
         

   
 

     
          

             
                

                                     (4.34) 

         is an S-shape function of     for every      with an inflection point at  
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  (4.35) 

as shown in Figure 4.1c. This behavior suggests that even if 
         

   
 is nonnegative over 

the domain of   , its value decreases to 0 as    goes to 1. In other words, a value close to 

1 for    blocks the information of   , but it does not increase the linearity of    with 

respect to    substantially. Such a property is used to find an optimal value of    using: 

                                 
         

   
                                 (4.36) 

where    is a design parameter set by the user, serving as a means to prevent    from 

getting excessively close to 1. Such an      can be calculated by finding the root of 

                        
         

   
    

     
          

             
                

          (4.37) 

A similar argument about the information loss can be made here. A large enough      

calculated using Eq.(4.37) that does not yield a positive    is an acceptable choice. 

Otherwise, an optimization such as 

                          
 

     
          

             
                

                       (4.38) 

subject to               must be performed. 

4.3.3.3.  Data-Based Selection of       

The key point to this method of specifying      is provided by Eq. (4.13). The necessary 

and sufficient condition for a pair         to have a strictly-increasing monotonic relation 

is:  
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  (4.39) 

which implies that: 

                                                               
   

   
       (4.40) 

and 

                                    
   

   
 

  

    
                          

 (41) 

Since the function describing the relationship of    and    is unknown in general, it is not 

possible to calculate 
   

   
 analytically. In such cases, find the lowest numerically-

calculated value of 
   

   
 based on the data, and select      such that 

    

      
 is lower than the 

lowest value. For example,      can be calculated using       
     

       
, where       

      
   

   
 , where           is a design parameter.  

4.3.3.4.  Maximum Likelihood Estimation of      

Maximum Likelihood Estimation (MLE) has been a mainstay for calculating parameters 

of probabilistic models. It can be applied to a wide range of problems from parameter 

estimation to model selection.
25

 This section proposes an MLE-based method for optimal 

selection of            .  

The likelihood of a parameter   (a random variable) given a random variable   is 

the conditional probability of   given   

                                                                    
        

      
 (4.42) 

where        and          denote the likelihood function and conditional probability, 
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respectively. For the case of continuous random variables, probability values will be 

replaced with probability density functions.   or   may not be indeed random variables 

(with no joint probability), but they are considered random quantities since their actual 

states or values are not definitely known to the user.  

The MLE method states that the parameter   which maximizes the likelihood 

function, has most likely given rise to the observed distribution of  . Therefore, finding 

an MLE requires a strategy to maximize the likelihood function with respect to its 

parameter or vector of parameters, even though the likelihood function does not have a 

closed-form mathematical formula. Using such a strategy should assure finding the global 

optimum whether analytically or numerically, as the likelihood function may have several 

local optima. 

Let                Then, the likelihood function of   given historical data   

is: 

                                                                 
    (4.43) 

where   denotes the probability density function. It is assumed that the data matrix   of 

the size       consists of   independent and identically distributed (i.i.d) data vectors 

   with the dimension  , each of which being considered as a realization of the random 

vector  . Using Eq.(4.21) to replace         yields 

       

       
                         

                          
     

   
 
   

                        (4.44) 

where   is a fixed copula function and      is the value of the  -th sample of random 
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variable   . It is usually more favorable to take the logarithm of the likelihood function. 

This function, which is called the log-likelihood, has the same optima as of the likelihood 

function besides being expressed in terms of the summations rather than products. 

Therefore, the log-likelihood function is: 

                    
                         

             
   

                   
                      

   
 
              

 
      (4.45) 

The optimal values of                     are then obtained by solving the       

algebraic equations: 

           

   
              

    
 

                 
       

                  
       

    

   
       

 

   
      

    
      

     
  

 

    
                             (4.46)                                                                                      

where                        . Because of the joint probability of         (which is 

being estimated by the rolling pin method) is unknown, analytical expressions for  
    

   
 

and 
    

   
  cannot be derived. However, considering that    

 
    

   
 and    

 can be 

calculated non-parametrically from data using Eqs. (4.6) or (4.7), it is possible to solve 

the system of       equations in Eq.(4.46) numerically to find an optimal   . Note 

that the notion of minimizing the information loss is already included in calculating the 

maximum likelihood estimation, as    represents an optimal quantity which gives rise to 

a distribution that models the historical data best. An initial guess for    can be 

estimated using one of the approaches presented in Sections 4.3.3.1, 4.3.3.2 and 4.3.3.3.  



135 
 

 
 

 Generally, any numerical global optimization algorithm may be employed to find 

the MLE of    from the objective function of Eq.(4.45), particularly when the 

computational cost is not a transcendent factor. This same procedure can be used to find 

an optimal parametric copula from a set of candidate parametric copulas. In this case, the 

following optimization problem has to be solved: 

         
       

                                        

                               
            

                
         

     
     

          
 
                     (4.47) 

where   is the set of candidate parametric copulas and   is the parameter vector 

corresponding to  .   

4.3.3.5.  Comparison of the Approaches of    Selection 

This section briefly compares the four approaches of selecting   . Although the 

maximum likelihood approach provides a rigorous mathematical way to find an 

optimal   , it is considerably of higher computational cost. This computational cost is a 

symptom of two causes. First, a global maximum has to be found. Second, since in 

general a closed-form mathematical expression cannot be derived for     
, the 

maximization problem should be solved numerically. On the other hand, the 

computational costs of the other three approaches are significantly less. Although the 

optimality of their estimated    values cannot be shown systematically, their estimated 

   values are acceptable as long as they yield transformed variables with strictly-

increasing monotonic relationships and their information losses are adequately low.  
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4.3.4. Selection of the Reference Variable 

It may first appear that the reference variable,   , can be arbitrarily any of the   

components. However, as the choice of an appropriate copula function greatly depends 

on the reference variable, the choice of    affects the quality of the joint probability 

estimation. In this section, several methods are introduced for selecting the reference 

variable more selectively.  

4.3.4.1.   Dependence Structure Approach 

According to Section 4.3.2, as    approaches       , the pairwise dependence structure 

of each         can be approximated by the dependence structure (copula) of the         

pair, which is the same dependence structure as of        . Therefore, selecting    such 

that the dependence structure of         is known will help to choose the copula in a 

more effective and informative manner. For example, if    is known to have a Gaussian 

distribution, the Gaussian copula will be an appropriate approximation of the dependence 

structure of the random vector  . 

4.3.4.2.  Witness Variable Approach 

There are cases in which none of the variables possess a simple and known distribution 

describable by a known parametric copula. In such cases a variable called the witness 

variable,   , is introduced as the      -st component of  . The witness variable 

should have the following characteristics: i) it should have a simple distribution with a 

copula function available, e.g. a Gaussian distribution with a mean of 0 and a variance  of 

1, and ii) it should be independent of each   . This variable serves as   . These properties 
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guarantee that the dependence structure of         can always be approximated by a 

predetermined copula as of        . For such an independent witness variable, the 

correlation function of Eq.(4.31) becomes 

                                                          
  

    
                     (4.48) 

and consequently                                                         

                                                        
       

  
   

   
 

     
  (4.49) 

 

4.3.4.3.  Maximum Likelihood approach 

A similar approach like what employed in Section 4.3.3.4 may be used to find an optimal 

reference variable, such that 

                                             
                                      (4.50) 

such a maximization problem requires to calculate the likelihood each time with a new  

   selected from the set of   ’s, with    estimated with each selected    optimally, 

where the corresponding copula function is selected from the knowledge on the marginal 

distribution of    or optimally through Eq.(4.47).  In this most general case, all adjustable 

features of the rolling pin distribution may be find optimally using a global optimization 

scheme; that is: 

                         
   

   
                                               (4.51) 
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4.4. Examples 

This section shows the application and performance of the rolling pin method in 

estimating joint probability distributions using two examples.  

4.4.1. Mathematical Example 

Consider the following system with three random variables: 

                                                                            (5.52) 

                                                                          (5.53) 

                                                                           (5.54) 

where        denotes the normal distribution with a mean of   and a standard deviation 

of      and    and    are white noise represented by          and            

respectively. Eqs.(4.52)-(4.54) offer that the causal structure of the system is       

  . As the relationships between    and   ,    and    and    and    are nonlinear and 

non-monotonic, conventional copulas cannot model this system. 

We assume that only historical data (1000 samples) from the system is available; that is, 

the causal structure of the variables is unknown. To generate the samples, first 1,000 

samples are taken from the distribution of    described by Eq.(4.52). Samples of    are 

generated by adding the cosine of each    sample to a random sample drawn from the 

distribution of   . A similar procedure is followed to generate 1,000    samples from    

samples. Figures 4.2a, 4.2b and 4.2c represent the sampled data points and the marginal 

probability densities of       and    are shown in Figures 4.2d, 4.2e and 4.2f, 

respectively. Probabilistic models are developed based on the 1000 samples (triplet data 

points). 
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Figure 4.2: Scatter plot of 1,000 training samples of (a)    vs.   , (b)    vs.   , (c)    vs.   . 

Marginal probability density of (d)   , (e)    and (f)   . 
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To model the system with a Bayesian network, one DAG should first be selected 

from 18 possible DAGs for the triplet           . However, the rolling pin method does 

not require knowing the true causal structure of the system.  As the goal here is to model 

the joint probability distribution of           , the choice of the reference variable is 

arbitrary. Here,    is selected as   . Because    has a Gaussian distribution with a very 

well-known copula function, the pairwise dependence structure of the variables will 

converge to that of Gaussian copula with a right selection of    (Figures 4.3d, 4.3e and 

4.3f).  With                   and                  and using        , the 

linear correlation coefficient approach using Eq.(4.32) yields          ,          , 

and             . These values are slightly lower than the optimal values estimated 

by the method of maximum likelihood. This is because the linear correlation approach 

satisfies the linearity criterion only, while greater      may be achieved with negligible 

information loss. This fact is shown comparatively in Table 4.1, where monotonizing 

parameters derived by the methods described in Section 4.3.3 are compared .The values 

of the transformed variables             are plotted in Figures 4.3a, 4.3b and 4.3c. The 

dataset of the monotonized random variables            is used the copula modeling step. 

After converting the data series into their probability integral transformed form (shown in 

Figures 4.3d, 4.3e and 4.3f) through the empirical CDFs (   
), a Gaussian copula is 

applied with the spearman’s rank correlation matrix, with elements calculated by 

Eq.(4.22):  
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Table 4.1: Monotonizing parameters of the first example derived by different methods in Section 

4.3.3. 

 

Method Design Parameter           

Correlation Coeff.                    

Correlation Derivative                   

Data-Based                  

MLE ---           
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Figure 4.3: Scatter plot of the transformed data (a)    vs.    , (b)    vs.   ,(c)    vs.   , (d)    
 

vs.    
, (e)    

 vs.    
, (f)    

 vs.    
. 

 

 

Figure 4.4: Empirical quantile function of (a)   , (b)   , (c)   . 
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The spearman’s correlation matrix validates the initial assumption of the existence of a 

high level of linear relationship between the random variables           , as they are 

dominated by the information content of the reference variable   . This allows one to 

approximate the copula by the Gaussian copula, as in the case all components of the 

random vector   are the same dependence structure as        . As it can be seen, with 

only            
 
     parameters and a correct choice of the copula function, the 

joint probability density of the vector   is fully specified using Eq.(4.21). The joint 

probability distribution of the original random vector   will then be easily estimated by 

inverting the variable transformation    
         

      
        . Figures 4.5a, 4.5b and 

4.5c show the contour plots of the estimated joint probability density of  , marginalized 

with respect to the variables   ,    and   , respectively, to calculate the pairwise 

bivariate probability density functions. Note that the rolling pin method has been able to 

estimate the skew probability density of Figure 4.5b, even though the non-skew Gaussian 

copula is used to estimate the dependence structure of the system. 

On the other hand, one may desire to take samples from the model distribution of 

  instead. To do so, samples are first taken from the copula function with the rank 

correlation matrix trained using the transformed data as described above. The procedure 

to sample the copula mostly depends on the family it belongs to.
26 

Samples from the 

copula then undergo a two-stage transformation. The first transformation converts the 

samples from the CDF space to   space using the quantile functions of   ’s. The 

empirical quantile functions of        and    are shown in Figures 4.4a, 4.4b and 4.4c. 

The second transformation converts   ’s to   ’s. 1 ,    samples of each    generated by 

this way are shown in Figures 4.5d, 4.5e and 4.5f.  It can be observed that the estimated  
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Figure 4.5: Contour plots of the estimated rolling pin probability density of (a)    vs.   , (b)    

vs.    and (c)    vs.   . 10,000 samples from the rolling pin estimated distribution of (a)    vs. 

  , (b)    vs.    and (c)    vs.   . 
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joint probability density function very well represents the non-monotonic relationships 

among the system variables as shown by the sampled data in Figures 4.2a, 4.2b and 4.2c. 

It should also be noted that since the training data size is relatively small (1,000 points), 

the randomness effect caused a slightly longer right tail of the observed data of in the pair 

        (Figure 4.2c), regardless of the symmetry of the distribution. This longer tail is 

exactly captured by the rolling-pin distribution in Figure 4.5c, and as a result more 

samples are generated in the right tail of 10,000 samples taken from the rolling pin 

distribution (Figure 4.5f).  This suggests that the random effects can be avoided by using 

larger data.  

4.4.2. Process Example 

Consider a continuous stirred tank reactor wherein a first-order exothermic reaction 

    takes place. The steady-state behavior of this process is described by: 

                                                        
  

      
  

   
   

 

 
 (4.55) 

                                           
      

  
     

  

      
  

     

 
 

 

   
 (4.56) 

where  ,    and    
  denote the rate of heat removal, the steady-state reaction temperature 

and  steady-state concentration of reactant   . Figures 4.6a, 4.6b and 4.6c depict   vs.   ,  

  vs.   
  and    vs.   

 , respectively. Here, we assume the system is stochastic, i.e.   is 

distributed as          and 

                                                                           (4.57) 

                                                                       
     (4.58) 

where  and    are the measured steady-state temperature and concentration, 
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respectively.     and    are white noise variables distributed as        and         .   is 

defined as in the first example. The model parameter values are listed in Table 4.2. 

Similar to the first example, to perform the rolling pin method 1,000 sample were 

generated by first sampling 1,000 data points from the distribution of    and then 

calculating the corresponding samples of  and    using Eqs.(4.55)-(4.58). Figures 4.7a, 

4.7b and 4.7c depict   vs.  ,    vs.    and   vs.    sampled data, respectively. As can be 

seen in Figure 4.6, for each value of   in the assigned domain, there are three steady-state 

values for    and   
 . On the other hand, for each steady-state    and   

 , there is only one 

corresponding  . Furthermore,    and   
  are related monotonically. Therefore, since the 

rolling pin method is best applicable to functions, we estimate the probabilistic 

functionality of   on   or    by choosing   or    as the reference variable. An important 

problem here is that both of these variables have complicated unknown marginal 

distributions. This leads to a pitfall; that is, if one tries to monotonize the remaining two 

variables with respect to   or   , very large values for the  monotonizing parameters 

have to be selected to ensure that the copula takes the form of a comonotonicity copula, 

leading to a considerable information loss.  

To address these problems, we transform the reference variable (here,  ) to a new 

variable,     defined by: 

                                                                             (4.59) 

where     and     are the inverse standard normal CDF and the empirical CDF of   

derived by Eq.(4.6).    has a        distribution and is used as the reference variable. 

This transformation provides a natural way to make sure     has the same order of 

magnitude as   and   . Also, the use of    as the reference variable enables us to capture  
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Table 4.2: Parameter values of the second example. 

 

Parameter Value Unit 
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the dependence structure of the monotonized variables by the Gaussian copula according 

to section 4.3.2. In general transformation of Eq.(4.59) can be performed using any 

inverse CDF, as long as the outcome variable results in a known dependence structure 

that can be captured by a parametric copula. As       (.) is a one-by-one function, it is 

invertible and as a result. Therefore, once the rolling distribution of            is 

calculated,   deriving the probability distribution of           will be straight forward.  

After transforming the   data as described above, the monotonizing parameters of 

  and    are calculated using the maximum likelihood method:           and 

          . The corresponding rank correlation matrix is then calculated: 

                                                  
                      
                   
                  

  

The rest of the calculations follow those given in Example 4.1 using the Gaussian 

copula. Once the rolling pin distribution of            is obtained, it can be converted to 

the distribution of           by applying the inverse transformation of Eq.(4.59). 

Figures 4.8a, 4.8b and 4.8c show the corresponding contour plots of the joint probability 

density generated by this approach. It can be seen that the non-monotone and monotone 

functionalities between each pair of the variables           is very clearly reflected by 

the probability densities. Although one may find it more appropriate to select a process 

input variable as the reference variable, in cases where process input variables give rise to 

multiple values for process output variables or none of the variables have known 

marginal distributions, the approach described above makes it possible to apply the 

rolling pin method to model complicated non-monotone relationships. 
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Figure 4.6: Deterministic behavior of (a)   
  vs.  , (b)    vs.   and (c)    vs.   
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Figure 4.7: 1,000 sampled data of (a)    vs.  , (b)   vs.   and (c)   vs.   . 
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Figure 4.8: Contour plots of the rolling pin-estimated probability density of (a)    vs.  , (b)   

vs.   and (c)   vs.   . 
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4.5.  Conclusions 

This chapter introduced a novel computationally-efficient and flexible method, named the 

rolling pin method, of estimating joint probability distribution of highly nonlinear and 

non-monotonic systems of continuous random variables. There is a broad range of 

applications for this method in probabilistic modeling and inference of systems with 

stochastic behavior. As discussed in detail in this chapter, the rolling pin method offers 

many advantages over its well-known counterparts such as the original parametric copula 

method, moment-based density estimation and nonparametric techniques of joint 

probability estimation. The method combines a novel transformation technique with the 

copula method; this combination offers a powerful tool in modeling multivariate joint 

probability distributions with arbitrary and not necessarily known pairwise dependence 

structures among the variables. This implies that the rolling pin method needs no 

knowledge of the exact dependence structure and its pairwise sameness throughout the 

system variables. More importantly, the method empowers the copula method to be 

employed in modeling non-monotonic interactions, which cannot be modeled by the 

conventional parametric copulas. In summary, the rolling pin method offers the following 

advantages: 1) the rolling pin method does not require any knowledge of the causal 

structure of variables, 2) it performs parameter learning significantly fast, with a 

computational complexity of      , 3) unlike conventional copulas, the rolling pin 

method is capable of modeling non-monotonic interactions among variables through the 

monotonization step, 4) it enables the user to model joint probability distributions over 

multiple (   ) random variables using a fixed parametric family of copula, regardless 

of possible differences in the variables pairwise dependence structures, 5) it allows one to 
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model unknown dependence structures with a known one, 6) since it treats random 

variables as continuous attributes, its estimated  probability densities are suitable to 

model rare events by evaluating the probability values over the states with no historical 

information. 
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Chapter 5: Rolling Pin Method: Efficient General Method of Joint Probability 

Modeling 

 

5.1. Introduction 

Bayesian networks (BNs) (also known as Bayesian belief networks,
2
 influence diagrams,

3
 

and causal networks
4
) have attracted a lot of attention in modeling uncertain knowledge 

and stochastic systems because of their flexibility, interpretability and natural extension 

of the human reasoning. The probabilistic inference methods introduced by Pearl
5
 and 

Lauritzen and Spiegelhalter,
6
 turned BNs to the mainstay for performing reasoning under 

uncertainty. Today, BNs have found a broad range of applications in science and 

technology, including, but not limited to, financial forecasting,
7
 weather prediction,

8
 

medical diagnosis,
9
 instrument fault detection and identification,

10,11
 and hardware 

troubleshooting.
12

  

Despite their unique capabilities, BNs suffer from multiple issues. First, BNs need 

an accurate topological structure called the directed acyclic graph (DAG) to be able to 

properly factorize joint probabilities. Any inaccuracy in the DAG will render the 

predictions unreliable. There are applications for which the DAG should be extracted 

from data. Despite efforts made to advance the BN structure learning,
13

 available 

algorithms for learning general Bayesian structures from data are computationally 

expensive,
14,15

 and their generated structures may be unreliable for large and dense 

networks. Second, both exact and approximate BN inference algorithms are 

computationally expensive.
16-18

 Although algorithms have been developed for performing 

local inference,
19

 the specific structure of DAGs in combination with the BN inference 
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algorithms prevents updating the probability distribution of individual variables given an 

evidence. Some intermediate variables are often updated in addition to the query 

variables (nodes).
20

 Third, in most of previous studies the attributes have traditionally 

been assumed to be discrete or multinomial.
21

 As a result, in many real-world 

applications continuous data should be discretized prior to be utilized by the network. 

The discretization poses multiple problems to the modeling task such as the loss of 

information due to coarse discretization,
22

 and the exponential increase of parameters 

(conditional probabilities) as finer discretization (higher number of states) is used. This 

exponential increase translates to exponentially higher computational cost of structure 

learning, parameter learning and inference. The trade-off between a finer discretization 

and its resulting computational cost indicates that discretization cut-points should be 

selected optimally.  Such an optimization problem is computationally demanding by its 

own. Fourth, parameter learning in such discrete networks is usually conducted by the 

relative frequency method. As a result, states with lack of samples may be left untrained 

and unused, even though the system is physically realizable in such states. 

This chapter introduces a new method that circumvents the BN issues listed 

above. The method conducts probabilistic inference using a rolling pin joint probability 

distribution.
1
 The rolling pin method uses monotonizing variable-transformations in 

combination with a parametric copula function. Advantages of this new method of 

inference over BNs are as follows. First, unlike BNs, this method does not require any 

knowledge of the causal structure among the variables. Second, it performs the parameter 

learning and probabilistic inference with computational complexities of       and     , 

respectively, which is much faster than its BN counterparts (  denotes the number of 
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system variables). Third, the method allows one to perform probabilistic inference for 

query variables of interest instead of the entire or unnecessarily large part of the network. 

Fourth, the rolling pin method is capable of modeling arbitrary joint distributions with 

non-monotonic interactions among variables. Fifth, the method treats random variables as 

continuous entities, so no information loss occurs because of the discretization, and there 

is no need for finding an optimal discretization method. Therefore, this proposed method 

is not suitable for discrete variables with a few states (such as categorical variables), as 

the ‘coarse’ discrete nature of these variables cannot be captured by the continuous 

models. Sixth, the method helps to predict single-variable rare events and complex rare 

events, where an unlikely event in some variables may lead to an extremely unlikely 

event of some other variables.  

The chapter proceeds as follows. Sections 5.2 and 5.3 briefly review BN 

modeling and the rolling pin method, respectively. Section 5.4 presents the new method 

of probabilistic inference using the rolling pin distribution and thoroughly compares 

inference via the proposed method and BNs. Section 5.5 considers two examples and 

compares simulation results from inference using the rolling pin method and BNs. 

Section 5.6 presents some concluding remarks. 

5.2. BN Modeling 

A BN is commonly considered as a simplified representation of joint probability 

distributions. This simplification is a result of the ability of BNs in factorizing high 

dimensional joint probability distributions of the domain variables. This factorization 

leads to a significant reduction of the parameters (probability values) to be estimated to 
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fully specify joint distributions. BNs borrow the factorization capability from the way 

their graphical structure; i.e., the directed acyclic graph (DAG), is defined. DAG of a BN 

is a topological structure, which encodes conditional independence among the variables. 

This hierarchy of conditional independence may be viewed as a means to specify the 

causal structure among the variables, where every arc (link) represents a direct cause-

and-effect relationship traveling from a cause variable (parent node) to an effect variable 

(child node).  If there is no direct causality in the system, the BN is called an 

independence map (I-map). On the other hand, if every arc of a DAG represents a direct 

causality, the network is called a dependence map (D-map). A network which is both I-

map and D-map is called a perfect-map. Each node in the network may be descendent 

(child) of multiple parent nodes. On the other hand, each node may be parent of multiple 

child nodes. Nodes with no parents are called root nodes and nodes with no children are 

leaf nodes.
20

 The above lines can be mathematically explained as follows. Let       

                        denote the joint probability of a random vector   

          . Throughout the chapter the random variables are shown by capital letters 

and their numerical values by small letters. Every joint probability distribution can be 

factorized using the chain rule; i.e., 

                                                               
 
    (5.1) 

where         denotes a conditional probability. The BN conditional independence states 

that given the values of parents, the child node becomes independent of the rest of the 

network; that is, given a node ordering as above 



159 
 

 
 

                                                                            (5.2) 

where       denotes the state of the set of parents of   . Therefore, the joint probability 

of Eq.(5.1) can be written as:  

                                                                      
 
    (5.3) 

which is the mathematical foundation of BNs. In fact, the DAG is encoded in Eq.(5.3) in 

the way by which the set of parents of each node is determined. Another important 

component of BNs appears in Eq.(5.3) as well; i.e., the conditional probability of each 

node given the state (value) of its parents. Knowing the DAG of a BN in combination 

with the corresponding conditional probabilities is the sufficient condition to calculate the 

joint distribution. The advantage offered by this factorization is the reduction in the 

number of parameters needed to fully specify a joint distribution. For example, 

determining a joint distribution over binary random variables          requires 

estimating          parameters (probabilities), while knowing that the DAG is 

      reduces this number to        . This difference grows exponentially 

as the number of variables and their states grow. 

However, BNs suffer from many disadvantages. Besides the high computational 

cost of the inference using BNs, particularly for large-scale systems, there are many cases 

for which the DAG should be learned from data. Not only is the task of data-driven BN 

structure learning   time consuming, but the available methods often fail to estimate the 

true causal structure of large and dense networks. Conclusively, the DAG which is 

considered the greatest strength of BNs may become the most problematic weakness of 

BNs.  
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To address these issues, a method is sought in this chapter to estimate joint 

probability distributions over domain variables with unknown causal relationships and 

arbitrary functionality between each pair of variables, including highly nonlinear and 

non-monotonic interactions. The method should be more affordable computationally than 

BNs, in both parameter learning and probabilistic inference steps. The method should 

also allow for inference for certain query variables, rather than the entire system. Such a 

method offers a probabilistic modeling framework that can replace BNs (if the domain 

variables are continuous). The next section describes the method that has these appealing 

features. 

5.3. The Rolling Pin Method: a Review  

As a standard practice throughout this chapter, we first normalize the original random 

variables          using 

                                                 
         

        
 

         

     
 (5.4)  

where       is the empirical standard deviation of    and         denotes the a finite 

empirical variance of     

                                                 
 

 
             

 
   

    (5.5) 

   is the number of samples of      for    , and       is the empirical mean of      

                                                        
 

 
        

     (5.6) 

Therefore, the data of each    has a mean value equal to   and a variance equal to 1.  

Given a vector of normalized continuous random variables               let 

             be defined such that 
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                                                                                    (5.7) 

where             is a constant parameter, called the monotonizing parameter of 

variable   , and    is the reference variable that is selected systematically 

from        . As it has been shown
 
in Chapter 4, with an appropriate selection of 

                 , every pair         is monotonically related and there is a one-by-

one correspondence between   and  . The elements of the vector of monotonizing 

parameters                   and    are specified using the algorithms given in 

Chapter 4. 

As the relationship of every pair         has strictly-increasing monotonic 

relationship, one can model accurately the multivariate cumulative distribution function 

(CDF) of  ,   , using a copula function: 

                                   
          

                         (5.8) 

where    
      

 are the univariate marginal CDFs of        , and   denotes an 

appropriate copula function. Let                             and    be the 

Jacobean matrix 
  

  
, then 

                                                                   
                (5.9) 

which confirms that the monotonization transformations of are one-to-one.  Because of 

this one-to-one property and the differentiability of the monotonization transformations, 

the following equality holds: 

                                                                          (5.10) 

which holds irrespective of the relationships between each pair          The preceding 
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multivariate distribution has been called the rolling pin distribution.
1
 Here,           

      denote the multivariate CDFs of   and  , respectively, and                

represents a parametric copula as described in Chapter 4. The probability density of   is 

then defined as:
 

                               
 
          

          
          

   

        
     

                 
     

                 
            

    
 
    (5.11) 

where                ,                  and    
    

          denote the 

copula density, joint density and marginal density functions, respectively. By convention,  

     is always set equal to  . 

5.4.  Performing Probabilistic Inference Using the Rolling Pin Distribution 

Although developing a joint probability distribution describing the stochastic 

interconnections of continuous random variables with general functionality is the main 

goal of the rolling pin method, the application of the rolling pin distribution in 

probabilistic inference reveals that the method is indeed a powerful machine learning 

technique. Probabilistic inference or reasoning refers to set of (mathematical) operations 

allowing updating the probabilities of a group of random variables, given information 

(evidence) on other variables.  A successful inference usually requires a joint probability 

distribution of the ensemble of two groups of variables mentioned above, in addition to a 

well-defined procedure to update probabilities, either analytically or numerically and in 

the shortest possible time. 
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The outcomes of the inference process can take on two forms: i) updated 

(posterior) joint probability distribution of the variables of interest, and ii) updated 

univariate marginal probabilities of the variables. The second form can be derived 

directly (through sampling from the updated joint distribution) or by marginalizing the 

posterior joint probability distribution (through applying analytical or numerical 

integration). Finding the posterior joint probability distribution of the query variables 

completely depends of the availability of the joint probability function over (evidence 

plus query) variables. In the rolling pin method, this joint probability is given by a rolling 

pin distribution. To perform the inference, all calculations are made in the space of the 

transformed variables ( ) and     
      

 
 
, and the results are then transformed back to 

the original variables ( ) using the inverse transformations. Let            denote a 

copula distribution function over the variables                 
      

 
 
. The  -

dimensional margin of  , denoted by   , is given by 

                                                                                              (5.12) 

Setting      here is equivalent to integrating the copula density function with respect to 

  ; i.e., 

                       
 

 
                   

 

 
          

    

       
 (5.13) 

Using these definitions, the conditional probability distribution of    given the values of a 

set of evidence variables                                                    is 

given by: 
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                                          (5.14) 

In terms of the copula density, the conditional density is calculated using:  

                                                        
                  

               
 (5.15)       

where                    and                 are calculated according to Eq. (5.13). 

Similarly, joint conditional probabilities of a set of variables            
  given 

             are calculated using: 

                            

                               

           

                   

           

        (5.16) 

                                                 
                           

               
 (5.17) 

To avoid the unnecessary computational cost required by Eqs.(5.11) and (5.13), we use 

the cumulative form of the copula function,  , to carry out the inference step. For cases 

for which the copula CDF does not have a closed form (as in elliptical copulas), the 

derivatives in Eqs.(5.14) and (5.16) should be calculated numerically. Once for each 

query variable                     is calculated, these conditional probabilities are used 

to generate samples for the variable    given           using conventional sampling 

techniques. The generated samples for               are then transformed back to 

             using the quantile function (inverse of CDF) of     
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                  (5.18) 

and finally, the samples of              are calculated using the inverse of the 

transformation of Eq.(5.7): 

                                              
               

        
                (5.19) 

where     ,      and      denote the  -th sample of variables   ,    and   , respectively. 

The samples derived in such a way are later used to estimate the updated probability 

density functions of the query variables using a parametric or non-parametric density 

estimation method such as histogram or kernel methods.   

5.4.1. A Probabilistic Inference Approach to Determine the Reference Variable 

If the final objective of using the rolling pin method is to conduct probabilistic inference, 

the choice of an appropriate    is even more crucial. Consider the case when an arbitrary 

variable is selected as   . If the evidence is given for a set of variables excluding    , 

then none of the variables                      can be calculated (since    

remains a random quantity). As a result, the evidence provides no numerical input to the 

inference process and no updated (conditional) probabilities can be calculated. To address 

this problem, one of the following proposed solutions may be employed:  

1.     is selected such that its value can always be determined from the evidence. In 

other words, although    is intrinsically a random variable, but since it is easily 

measurable at each moment, its status can always be an input to the inference 

problem. 
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2.     is not selected a priori; it is selected when an evidence becomes available. 

This means     is selected from the variables for which evidence has become 

available.  

3.    is selected using the witness variable approach
1
. 

Although these approaches yield equally good results, the first approach is preferable as it 

is more computationally favorable. 

5.4.2. Comparison with BNs 

While BNs have been the most popular framework to carryout probabilistic inference 

where probabilities of the query variables are updated when evidences are entered, the 

rolling pin distribution provides a powerful alternative to BNs.  In the following 

paragraphs, major advantages of the rolling pin method over BNs are discussed.  

5.4.2.1. Causal Structure 

BNs in fact present a factorization of high-dimensional probability distributions, based on 

the conditional independence and causal structure among the variables. This reduces the 

number of model parameters (elements of the conditional probability arrays), but it gives 

rise to the difficult problem of BN structure learning from data. When the exact 

dependence structure of the variables is unknown and cannot be determined from the 

available knowledge, it is imperative to extract such a structure from data, to build the 

corresponding BN. There is a wide range of techniques proposed to solve this problem 

including score-and-search,
23

 conditional independence,
24

 hybrid,
25

 and heuristic 

techniques.
26

 However, none of them provide a general and computationally tractable 
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way to derive the true BN structure from the data, particularly for large-scale networks. 

Furthermore, inaccuracies present in these techniques make the results unreliable when 

dealing with large-scale and dense networks. On the other side, unlike BNs, a rolling pin 

distribution model uses a joint probability distribution constructed over all domain 

variables without any need to underlying causal structure across the variables; that is, it is 

not necessary to know anything about the cause-and-effect status of any pair of variables 

prior to the construction of joint probability distributions. For this reason, the rolling pin 

method has the advantage of not requiring the time-consuming and somewhat unreliable 

structure learning step of BNs.   

5.4.2.2. Computational Cost  

Generally, the implementation of BNs includes three major steps:  

i. Structure learning: As described earlier, if the exact graph structure of a BN cannot 

be obtained from the knowledge of the domain variables, it should be estimated 

from data. It has been proven that the exact structure learning problem is NP-hard in 

general.
14,15

 Finding the exact structure of the trees is polynomial,
27

 while learning 

polytrees is shown to be NP-hard.
28

 The computational complexities of a variety of 

BN structure learning schemes are listed in Table 5.1.  Table 5.1 compares the 

computational costs of different steps of the BN learning and implementation with 

the equivalent steps of learning the joint probability distribution using the rolling 

pin method and performing probabilistic inference with it.  

ii. Parameter learning: This step involves calculating the elements of the conditional 

probability arrays of the discrete variables of the network. The number of 
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parameters to be learnt (calculated) is proportional to the number of the variables 

(nodes), number of the states of each node, and the degree of connectivity of 

individual nodes with their parents. The last two are particularly responsible for the 

exponential increase of the computational complexity of the parameter learning, 

with the number of the parameters. For example, the conditional probability array 

of an  -state variable that has      -state parents has           parameters. It is 

noteworthy that as the size of the parameter learning increases, the computational 

cost of the data-based structure learning increases considerably. 

iii. Probabilistic Inference: Both exact and approximate inferences in BNs are NP-hard 

problems
16-18

 in general. The computational complexities of some well-known BN 

inference algorithms are as follows. Pearl’s message passing algorithm has 

polynomial complexity as a function of the number of domain variables. The 

computational cost of the loop cutset conditioning method for multiply connected 

networks is exponential in the size of the loop cutest,
29

 and also minimizing the size 

of the loop cutset is NP-hard.
30

 The complexity of Lauritzen’s clique-tree 

propagation or clustering method
6
 increases exponentially with the size of the 

largest clique, and the method becomes very slow for dense network. The variable 

elimination method
31

 is NP-hard in optimizing the ordering of the elimination 

process. 

On the other hand, as the rolling pin method estimates a joint probability distribution with 

no factorization, it eliminates the structure learning step. As mentioned in 
1
, the rolling 

pin method has     parameters that should be estimated from data, where     

      
      

 
   

          

 
   and   is the number of variables. The  
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Table 5.1: Computational complexity of the rolling pin method compared to some well-known 

BN algorithms. 

 

 

 

 

 

 

 

 

BNs 

Parameter learning Structure learning Inference 

method complexity method complexity method complexity 

MLE 

 

MAP 

 

EM 

NP 

 

NP-hard 

 

NP-hard 

General exact 

 

Exact tree 

 

Exact polytree 

NP-hard 

 

Polynomial 

 

NP-hard 

 

General exact 

 

General approx. 

 

Message passing 

 

Cut-set conditioning 

 

Clique-tree 

 

 

variable elimination 

NP-hard 

 

NP-hard 

 

Polynomial 

 

Exponential in size of 

largest cut-set 

Exponential in size of 

largest clique 

NP-hard 

Rolling 

Pin 
      Not required       
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parameters are the monotonizing parameters, the correlation parameters and the 

smoothing parameters (if the marginal kernel densities are used. If the empirical 

distribution is used, this number will be proportional to   again). The     functionality 

does not depend on the denseness of the causal network. Therefore, the parameter-

estimation computational complexity of the rolling pin method is of      . Finally, as 

suggested by Section 5.4, inference using the rolling pin method has the computational 

complexity of      , where   denotes the number of evidence variables. A comparison 

of the computational complexities of learning and inference steps of the rolling pin 

method and BNs is given in Table 5.1.  

5.4.2.3.  Inference Over Certain Variables  

A basic component of BNs is their DAG structure. The graph determines the conditional 

independence and direct casualties among variables. It also plays an important role in 

determining the node ordering by which the probability distributions of the query 

variables are updated given the evidences. Although several local inference algorithms 

have been developed,
32

 updating the entire BN probabilities is still a common practice. 

Furthermore, because of BN belief propagation rules, updating probability distribution of 

a query node is possible only when at least all nodes on the shortest path between the 

query node and evidence node are also updated. This implies that when updating the 

belief about the desired query nodes, usually some non-query variables have to be 

updated. This situation may be computationally problematic, especially when the number 

of variables grows and/or the inference should be conducted in real-time. On the other 

hand, according to Eq.(5.14), the rolling pin method enables the user to selectively update 
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the desired query nodes and calculate the posterior probability of each query variable 

independently of other query or non-query variables. This selective updating reduces the 

computational complexity significantly to      , where   denotes the number of the 

query variables. 

5.4.2.4. Variable Discretization 

In many real-world applications, variables are continuous. BNs usually require 

discretization of continuous variables so that the cost of the computational steps involved 

BN modeling becomes manageable. Moreover, many of widely-used Bayesian update 

rules can handle discrete random variables only.
20

 The variable discretization partitions 

continuous variables into ranges (bins), and then BNs consider each interval as a class or 

category. The discretization has several drawbacks. First, the discretization is always 

accompanied by an intrinsic irreversible loss of information.
33

 Such an information loss is 

more serious when less number of partitions is used to approximate a continuous 

variable. On the other hand, increasing the number of partitions gives rise to higher 

computational complexity (e.g. when estimating the associated probabilities, deriving the 

posterior distribution or even finding the BN structure). Therefore, there is a trade-off 

between discretization quality and computational cost. Despite efforts made to reduce the 

discretization computational cost for BNs,
21

 finding an optimal discretization is a hard 

problem in general.
34

 This is mainly because it involves search for an optimal partitioning 

in a multidimensional space, as in most cases variables are best discretized when their 

causal interconnections are taken into account. Many such optimization schemes also 

search for an optimal Bayesian structure simultaneously, which renders the optimal 
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discretization problem even more computationally expensive. On the other hand, as the 

rolling pin method considers variables in their original continuous form, it does not 

require discretization, making the method more computationally-efficient and accurate.  

5.4.2.5. Problem of Rare Events 

 BNs mostly rely on the relative-frequency-based techniques (e.g., the maximum 

likelihood-based methods) to learn the conditional probability values, so they are 

susceptible to the cases for which there are no data available for certain regions or ranges 

(rare states) due to the scarcity of data. Although some methods such as the MLME
35

 and 

ME methods
36

 have been proposed to estimate the conditional probabilities over the 

unobserved regions, using BNs for performing inference for rare events is still limited. At 

the same time, the rolling pin method presents a natural interpretation of rare states that 

have their near-zero probabilities, which can be predicted by probability density functions 

of continuous random variables. For this reason, the rolling pin method is appropriate for 

modeling rare events.  

5.5.  Examples 

This section shows the application and performance of the rolling pin method through 

two examples. One example is used to compare the rolling pin method and its equivalent 

BN in terms of the quality of predictive inference, and the other example to compare the 

two methods in terms of the quality of diagnostic inference. It should be noted that in 

both examples the BN structures are assumed to be known, and therefore imperfectness 

of BNs arising from structure learning is not being taken into account.  Despite this 
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assumption, as it will be shown, the rolling pin method provides a superior performance 

in both cases. 

5.5.1. Mathematical Example 

Consider a system composed of two continuous random variables with an uncertain 

relationship. The two random variables are    and    governed by: 

                   (5.20) 

       
        

  
               (5.21) 

where        denotes the Gaussian distribution with a mean of   and a standard 

deviation of      and   is white noise, representing the uncertainty in the relationship 

between the variables. These equations suggest that the causal structure      , 

meaning    affects     This causal structure and the prior probabilities calculated using 

the BN are shown in Figure 5.1.  For each variable, five states which completely cover 

the range of the observed (historical) data, are considered. Prior and conditional 

probabilities are estimated solely based on 1,000 random samples taken from the actual 

distribution of        . First, 1,000 samples are simulated using the marginal distribution 

of    defined by 5.(20), and then these 1000 samples are used to generate 1,000 samples 

of    according to Eq.(5.21). The same 1,000 sample pairs of         are used to 

construct the rolling pin distribution. To this end,    is used as the reference variable as 

its empirical distribution is relatively symmetric and close to normal distribution (a 

measure of the symmetry is the skewness of the distribution). Through the method of  
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Figure 5.1: BN and prior probabilities of the first example. 
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correlation coefficient described in Chapter 4,    is calculated to be     . 1,000 samples 

of    are then calculated using Eq.(5.7). The dependence structure of         is 

approximated by the dependence structure of         which is represented by the 

Gaussian copula, with the spearman’s rank correlation matrix:
 

 
            
            

  

Figures 5.2a shows 1,000 samples taken from the actual distribution of          

and Figure 5.2b depicts the contour plot of the joint probability density function of 

        estimated by the rolling pin method. As can be seen, the rolling pin-method-

estimated distribution replicates the behavior observed in the data almost exactly, despite 

the complex governing equations of the variables. The quality of the estimation will be 

higher when more data points are available (in vicinity of the mean). In this example, the 

rolling pin method has 4 parameters and does not need knowledge of the causal structure, 

while BN has 24 parameters despite the coarse discretization (5 states for each variable). 

We will show how this coarse discretization will negatively affect the BN inference 

quality. 

Once the joint probabilities are estimated using the BN and the rolling pin 

distribution, they are compared in terms of inference quality. Here, predictive inference is 

performed, where the value (state) of the input variable    is given and the goal is to 

update the belief about the output variable by deriving the posterior probability density 

(distribution) of   . Suppose    is observed at       , this corresponds to    in its 2
nd

 

state in the BN. Given this value (state), the posterior probability of    is calculated. 
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Figure 5.2: (a) 1,000 samples from the distribution of        , and (b) contour plot of the 

corresponding rolling pin joint distribution function. 
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Figure 5.3: (a) Prior and rolling pin-method-calculated posterior density functions of   , (b) BN-

calculated posterior probability of   , and (c) discretized rolling pin-method-calculated posterior 

distribution of   . 
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Figure 5.3a presents the prior, actual posterior and the rolling pin-method-

calculated posterior densities of   , Figure 5.3b the discretized posterior probability 

of   , Figure 5.3c the BN-calculated posterior probability distribution of   , and Figure 

5.3d the discretized rolling pin-method-calculated posterior probability distribution of   . 

The discretization allows comparing the posterior rolling pin- and BN-calculated 

distributions with the actual posterior probability of   . The results indicate that unlike 

the rolling pin-calculated posterior probability, the BN-calculated posterior probability is 

an inaccurate representation of the actual posterior probability. This inaccuracy is caused 

by the discretization of a probability density that bears an irreversible information loss 

(which increases as less number of states is employed for discretization). Moreover, 

coarse discretization makes the class labels and attribute values less consistent. As a 

result, the inference performed given the evidence becomes less reliable as the deviation 

of the actual value of the evidence from the average value of the corresponding state 

increases. This trend can be observed in the results; although        is in the 2
nd

 state 

of the variable   , as it significantly differs from the state average value, the BN-

calculated posterior distribution poorly reflects the effect of this input on the output, 

rather estimating an average behavior of the output given rise from the entire range of 

values included in the 2
nd

 state of   . On the other hand, increasing the number of states 

drastically decelerates the BN learning and inference as indicated in Table 5.1. 

Finally, an argument can be made about the ability of the BN model in making 

predictions of the states not shown up in the data. In contrast to the rolling pin method, 

BN is only able to perform inference for states for which information is available through 

the historical data. For this reason, since there is no data points observed, say, in the 5
th
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state of    when an instantiation of    is observed in its 2
nd

 states, the posterior 

probability of    will never shift to the 5
th

 state given the aforementioned evidence, even 

if it is very unlikely. 

5.5.2. Process Example 

Consider the stirred tank heating system shown in Figure 5.4. The process at steady state 

is governed by:  

                                                            
 
          (5.22) 

                                                          
 
        (5.23) 

                                                              
    

 
    (5.24) 

where  
 
,   ,   ,   ,   ,   ,  ,   ,   ,   and   denote the liquid density, liquid heat 

capacity, inlet and outlet flow rates, inlet and outlet temperatures, rate of the thermal 

energy supplied to the system, two white noise signals, liquid level inside the tank, and 

the exit pipe resistance, respectively. This model has three applications. First, it is used to 

generate 1,000 samples representing the process historical data, which will be used as 

(historical) dataset to train both rolling pin and BN models. Second, the causal structure 

of the Bayesian model is extracted from the model equations. Third, the model will be 

used to compare the inference results. Probability distribution functions of the 

independent variables (roots nodes) and the white noise signals are listed in Table 5.2. 

The first-principles model parameter values are chosen to be those of water at 

atmospheric pressure and 25˚C, i.e.        
  

    
 and  

 
     

  

  . The system’s BN 

and the associated prior probabilities are depicted in Figure 5.5. 
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Table 5.2: Probability distributions of root nodes (variables) and noise signals of Example 2. 

       denotes the Gaussian distribution with a mean of   and a standard deviation of    . 

  Variable (unit) Distribution 
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After generating 1,000 random samples using the distributions of Table 5.2 and 

Eqs.(5.22)-(5.24), the samples are used to train the rolling pin and BN models. If the joint 

probability distribution trained in this way is marginalized for each of the domain 

variables in the absence of any evidence, it gives the data-driven prior (normal operation) 

probability distribution of each node. Two points should be noted here. First, as the 

rolling pin method treats variables as continuous quantities, it yields probability density 

functions, unlike BN that yields the probability mass functions for discretized variables. 

On the other hand, the BN classifies the data into ranges or states. In this case, each 

variable has three states obtained by dividing the observed data range into equally-sized 

bins. Since continuous random variables can take infinitely many values, a probability 

density function is a more natural way to show uncertainty in a variable and allows for 

higher resolution calculations.  

There are two major types of probabilistic inference. The forward inference 

(prediction) updates the probability of the effect variables given the state of the cause 

variable. The backward inference (diagnosis) invloves updating the belief about the cause 

variable given evidence on an effect variable. In this example, the evidence is considered 

to happen for the outlet temperature     which is an effect variable that has three cause 

variables   ,   and   . The objective of performing a probabilistic inference of this kind 

is to investigate the most probable cause to the observed abnormality in the effect 

variable. To this end, it is assumed that the abnormal situation is    at 6 ˚C, a value 

significantly higher than its data-based mean value. Once the evidence is provided, it can 

be directly fed into the rolling pin inference algorithm described in Section 5.4. Inference 

is then conducted selectively for the variables of interest.  Figures 5.6a, 5.6b and 5.6c  
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Figure 5.4: Schematic of the heating tank of the second example. 
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Figure 5.5: BN structure and prior probabilities of the variables of the heating tank example. 
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Figure 5.6: Actual prior, actual posterior and rolling pin-method-calculated posterior 

distributions of (a)   , (b)   and (c)   . 
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Figure 5.7: Discretized rolling pin-method-calculated posterior probabilities: (a)   , (b)   and (c) 

  . BN-calculated posterior probabilities of the BN: (d)   ,(e)   and (f)   . Both methods trained 

by 1,000 samples. 

 

 

 

 

 

20 25 30
0

0.2

0.4

0.6

0.8

T
i

P
o

s
te

ri
o

r 
P

r(
T

i)

0.6 0.85 1.1 1.35 1.6

x 10
6

0

0.2

0.4

0.6

0.8

Q
P

o
s
te

ri
o

r 
P

r(
Q

)
4 8 12

x 10
-3

0

0.2

0.4

0.6

0.8

1

F
i

P
o

s
te

ri
o

r 
P

r(
F

i)
20 25 30
0

0.2

0.4

0.6

0.8

T
i

P
o

s
te

ri
o

r 
P

r(
T

i)

4 8 12

x 10
-3

0

0.2

0.4

0.6

0.8

F
i

P
o

s
te

ri
o

r 
P

r(
F

i)
0.6 0.85 1.1 1.35 1.6

x 10
6

0

0.2

0.4

0.6

0.8

Q

P
o

s
te

ri
o

r 
P

r(
Q

)
(a)                                                       (b)                                                       (c)

(d)                                                       (e)                                                       (f)



186 
 

 
 

compare the posterior probability density of the query nodes derived by 1,000,000 

samples from the model described using Eqs.(5.22)-(5.24) and the rolling pin method 

with the prior probabilities of the query variables. The discretized posterior probabilities 

of the rolling pin method trained by the set of 1,000 samples are shown in Figures 5.7a, 

5.7b and 5.7c. Here, the reference variable is selected to one of the parent nodes, since 

they all have Gaussian distributions. It can be seen that the prediction of the rolling pin 

method almost exactly fits the actual posterior densities, and is consistent with the 

primary intuitive expectation of an increase in heat rate   or a decrease of   . 

Surprisingly, the evidence has a small effect on   . This suggests that based on the 

historical behavior of the system, whether    is too narrowly distributed or it has had 

relatively negligible effect on    compared to two other parents. Also   posterior density 

function demonstrates a more sensible changes than   . Analogous to the description 

above, this implies that   is a more probable candidate for the observed abnormality 

of   . Figures 5.7d, 5.7e and 5.7f compare the result of the Bayesian diagnostic inference 

on updating the probability of    to their counterparts in Figures 5.7a, 5.7b and 5.7c. The 

prediction by the BN represents a similar trend in the deviation of the query nodes. 

However, as can be seen, these probability distributions reflect less detail, due to the 

coarse discretization. As expected, unlike the rolling pin method the BN does not expand 

the posterior distributions to less likely states, due to BN’s limitation on handling the so-

called rare events; i.e., the states where no training data are available for. The final point 

made here is that the inference using the rolling pin method only requires updating the 

variables of interest, parents of   , rather than what is done by ordinary BNs. In the case 

of this small example network, the result is significant: only 3 posterior distributions are 
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updated by the rolling pin method given the evidence, compared to 5 nodes updated in 

the BN. This difference will be much more considerable in large scale network and will 

result in a highly targeted probabilistic inference. 

5.6.  Conclusions 

This chapter introduced a computationally efficient and flexible framework to perform 

probabilistic inference over highly nonlinear and non-monotonic systems of random 

attributes. As discussed in this chapter, the probabilistic inference is performed with the 

help of a novel joint probability distribution function introduced in our recent paper.
1
 The 

rolling pin method combines monotonized random variables with a copula function. This 

combination allows for modeling multivariate joint probabilities with unknown and not 

necessarily identical pairwise dependence structures with non-monotonic interactions 

among the variables. The resulting joint probability distribution replaces the joint 

distribution constructed by a BN. The method offers many unique advantages over its 

well-known counterpart, the Bayesian network framework.  First, unlike BNs, the rolling 

pin method does not require any knowledge about the causal structure among the 

variables, therefore the computational cost and inaccuracies due to the BN structure 

learning will be eliminated. Second, it performs the parameter learning and probabilistic 

inference with the computational complexity of       and     , respectively, which is 

significantly faster than BNs. Third, the method allows one to perform probabilistic 

inference for any set of certain query variables of interest with no need to update the 

intermediate variables or the entire network. Fourth, since the rolling pin method treats 

random variables as continuous entities, its prior and posterior estimated probability 

densities may be used to predict single-variable rare events and complex rare events no 
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data available in the historical dataset, where an unlikely event in some variables may 

lead to an extremely unlikely event of some other variables. Fifth, it does not need 

discretization of continuous variables, so it decreases information loss and computational 

cost, and accelerates modeling and inference processes. 
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Chapter 6: Rolling Pin Method: Efficient General Method of Joint Probability 

Modeling 

 

6.1. Introduction 

Regression analysis is a statistical approach to describe the quantitative relationship 

between a set of input variables (also called features, predictive variables, explanatory 

variables, regressors, etc.) and a set of output variables (also called response variables) 

based on observational or experimental data. Regression is also known as a supervised 

machine learning technique whose output variables are usually continuous attributes.
1
 

Over the past century, numerous regression methods have been introduced, including, but 

not limited to, linear regression
2
, Gaussian process regression

3
, nonlinear regression

2
, 

random effect models
4
 logistic regression

5
, and Bayesian regression.

6
 These methods 

vary considerably in the way they utilize data to develop and train a model. Along with 

the regression methods, methods of selecting and validating regression models and 

techniques for measuring goodness-of-fit of regression models
2
 have also been 

developed.  

The available regression methods can be divided into three main categories: 

parametric methods, non-parametric methods, and semi-parametric methods.  Parametric 

methods use a predefined parametric mathematical formula to relate input variables to 

output variables, where the parameters are estimated from data by optimizing a goodness-

of-fit measure.
7,8 

 Parametric regression models are relatively easy to train and 

implement. On the other hand, if the model is misidentified, the resulting regression 

model fails to replicate the actual underlying mechanism that has given rise to the 

observed data. Although some methods have been introduced to select the parametric 
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model and its validation, this process may be computationally demanding. Also, 

parametric models may suffer from a huge increase in the number of parameters to be 

estimated as the system dimensions increase.
9
 Non-parametric methods need no 

predefined mathematical model. They assign a function to each data point and take the 

mean of these functions as a regression model.
10

  Semi-parametric methods combine 

parametric and nonparametric methods to develop a regression model.
11

 In the last two 

categories, the regression model has to be estimated (identified) fully or partially from 

data; therefore more data points are required, and the convergence rate is lower compared 

to parametric methods.
9
 However, these two categories are more flexible frameworks for 

developing a regression model. 

One of the methods used for semi-parametric regression is the copula method. A 

copula is a cumulative joint probability distribution function whose domain is a unit 

hypercube. Copulas are used to capture the so-called dependence structure of domain 

variables.
12

 Through the Sklar’s theorem
13

 one can estimate a joint probability 

distribution using an appropriate copula and the univariate marginal distributions of 

domain variables. This estimation is considered semi-parametric if either the copula or 

marginal distributions (but not both) are constructed non-parametrically. The most 

common semi-parametric estimation is when the margins are defined non-parametrically 

and copulas parametrically. This will reduce the computational cost while maintain 

flexibility at an acceptable level. Such a joint probability distribution can be the basis for 

semi-parametric regression.
14

 Gaussian copula regression has been used extensively for 

cases where the marginal distributions are non-Gaussian while the dependence structure 

remains Gaussian.
15,16 

 Non-Gaussian parametric copulas have also been used to estimate 
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(identify) the regression model. Examples include Archimedean copulas.
17,18

 A variety of 

copula-based inference methods have been introduced under the linearity assumptions or 

using linearization functional.
19

 While not explicitly referring to the regression analysis, 

in several studies;
20,21,22

 similar functions have been derived by calculating the copula 

conditional independence. A mixture of copulas is used to create more complex non-

Gaussian copulas describing the feature-response relationship.
23

 Constructing the copulas 

based on the affine generalized hyperbolic distributions is also considered as a way of 

generating more complicated parametric copulas applicable to the regression models.
24 

Although parametric copulas along with non-parametrically-determined marginal 

distributions offer a reasonably flexible framework to perform a tractable regression 

analysis, their application is limited by the following facts: 1) ordinary parametric 

copulas cannot capture non-monotonic relationships between features and response, 2) 

there are a limited number of parametric copula families in the literature that are, of 

course, not representative of every possible dependence structure, and 3) every single 

parametric copula assigns the same dependence structure to each pairwise combination of 

the domain variables, which does not necessarily hold in reality. 

This work presents a new copula-based semi-parametric method of identifying 

regression models.  This method uses the rolling pin method
22,25

 to calculate joint 

probability distributions. As the rolling pin method-estimated joint probabilities can 

capture non-monotonic interactions, the regression method is capable of modeling non-

monotonic behavior appearing in observed data. The method is semi-parametric as it 

combines parametric copulas with non-parametrically-estimated univariate marginal 

distributions. It provides regression models with a relatively low number of parameters, 
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which grows quadratically with the number of input variables.
22

 This last property is 

particularly appealing when a regression model is to be identified for a large-scale 

system. Furthermore, the method can be easily applied to the systems with input-

dependent noise terms. The rolling pin distribution provides a well-defined mathematical 

background for estimating the confidence intervals and other statistical properties of the 

regression model. 

The chapter proceeds as follows. Section 6.2 presents a brief review of the rolling 

pin method of joint probability estimation. The proposed regression method is described 

in Section 6.3. Section 6.4 shows the application and performance of the proposed 

method using two examples. The chapter ends with concluding remarks in Section 6.5. 

6.2.  Preliminaries and a Brief Review of the Rolling Pin (RP) Method 

Throughout this chapter, every random variable is normalized using its empirical mean 

and variance. Given the samples      of a random variable   , its corresponding 

normalized random variable    is defined as: 

                                                               
         

        
 (6.1) 

where       is the empirical mean of     

                                                           
 

 
        

          

and         is the empirical variance of    

                                                    
 

 
             

 
   

    (6.3) 

which is assumed to take a finite ad non-zero value, and   denotes the number of samples 
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of the random variable   . Therefore,    has an empirical mean value of   and an 

empirical variance of 1.  

Given a vector of normalized continuous random variables                the 

random vector              is defined by the one-to-one monotonization 

transfromation 

                                                                                      (4) 

where          is the monotonizing parameter of the random variable      and    is the 

reference variable, selected optimally from the elements of             .   

           will be referred to as the vector of the monotonizing parameters of random 

vector  .  It is shown in
25

 that, with an appropriate selection of             , 

denoted by   , every pair of variables                     are monotonically 

related.The elements of the vector of monotonizing parameters                    

and    are selected according to the guidelines presented in Chapter 4.
25 

As the relationship between every    and    is a strictly-increasing monotonic 

relationship, the multivariate cumulative density function (CDF) of  ,   , can be 

modeled using an appropriate parametric copula function,                : 

                                                  
           

      (6.5) 

where    
          represents the marginal CDFs of   . Since the monotonization 

transformation is one-to-one it is shown in our paper
25

,  

                                                        
 
     

 
                (6.6) 

where               and               denote the joint density functions at 
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                          , respectively, and    is the Jacobian matrix 
  

  
. Therefore 

the probability density of   is then defined as: 

                                                                
 
                          (6.7) 

or in terms of the copula density 

                  
           

                 
    

 
    

                  
     

             
    

            
    

 
        (6.8) 

where                 is the copula density function,    
           and 

    
           denote the marginal density functions of   and  , respectively. By 

convention      always equals to  . 

The joint probability distribution obtained using the rolling pin (RP) method possesses 

several advantages compared to those obtained using other probability estimation 

methods: 

 Modeling non-monotonic relationships: In general, ordinary parametric copulas are 

unable to capture non-monotonic relationships amongst variables. The 

monotonization transformation enables parametric copulas to model non-monotonic 

behavior observed in data without making any changes in the mathematical definition 

of copula functions.  

 Modeling unknown and unidentified dependence structure: The rolling pin 

method monotonizes the original variables with respect to a reference variable. Since 

the reference variable becomes a dominant part of each of the monotonized variables, 

it enables the modeling scheme to make a selection from the set of symmetric 
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parametric copulas, which is eventually used to approximate the dependence structure 

of the monotonized variables. Such a symmetric copula substitutes the original 

dependence structure of the variables and makes it possible to estimate complicated, 

unknown or even unidentified dependence structures with a simplified and known 

parametric copula. 

 Modeling systems with different pairwise dependence structures: When a specific 

parametric copula (such as Gaussian copula, Frank copula, etc.) is used to estimate 

the dependence structure of multiple (   ) variables, it assigns the same 

dependence structure to each pair of the variables, even though the pairwise 

dependence structures are not the same in general. Vine copulas
27

  have been 

introduced to address this problem by expressing the target joint (     copula as 

the product of some factorized lower-dimensional copulas (mainly bivariate copulas). 

However, these copulas still require finding (a) an appropriate factorization of the 

main copula and (b) the right copulas describing the pairwise dependence structures 

(c) the corresponding optimal copula parameters. For these reasons, Vine copulas 

become computationally expensive and less reliable for large  ’s. On the other hand, 

the monotonization transformations enable the rolling pin method to model joint 

copulas with different pairwise dependence structures with a single parametric copula 

selected from a limited set of symmetric copulas.  

 Computational efficiency: The rolling pin method uses parametric copulas, which 

determine dependence structures based on the correlation or association coefficients 

of variables.
25

 This allows for defining joint distributions using minimum number of 

parameters. Moreover, sampling from parametric copulas has already been studied 
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extensively, and numerous efficient sampling methods are available in the literature. 

These features allow one to model a wide range of dependence structures with a 

relatively low computational cost. 

In the next section we will show how this joint probability estimation method can help 

identify regression models. 

6.3.  Regression Model Identification 

This section describes how the RP method can be used to efficiently and reliably find 

regression models relating one set of variables to another set.  Let               and 

  denote the  -dimentional vectors of   continuous input random variables and the 

continuous output random variable, respectively. Let   be related to   according to: 

                                                                      (6.9) 

where   is  a deterministic function, and   is a noise term. Assumptions made about the 

behavior of   (represented by the probability distribution function of  ) significantly 

affect the choice of the method of finding the regression function     . A common 

practice in statistics is to assume that the conditional mean of   equal to  ; that is: 

                                                                        
  

  
  (6.10) 

where      and      denote the domain of    and expectation (mean) function, 

respectively, and      is the conditional probability density function of the noise on  . It 

can be implied that   is not considered independent of  , i.e. the target probability density 

can be heteroskedastic. This leads to:  
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                                                                        (6.11) 

Eq.(6.11) implies that given the aforementioned assumptions about  ,            . 

The conditional expectation of   given   can always be calculated, if the true joint 

probability distribution of the input and output variables is available, then: 

                                                                    
  

  
 (6.12) 

One can write     , the conditional density of   given  , in terms of a joint probability 

distribution which probabilistically connects the input and output variables, leading to: 

                                                         
               

            
  

  

  
 (6.13) 

where      and    denote the joint probability distributions of         and  , 

respectively.  Eq. (6.13) implies that the quality of the identified regression model 

strongly depends on the strategy of finding                . Since (a) the probabilistic 

relationship between   and   may take any form, including highly nonlinear and non-

monotonic relationships, and (b) the dependence structure of         can be very 

complex and unknown, particularly as   grows, a method should first be used to 

accurately estimate      . In general, it is desired to use a method that has a low 

computational cost when applied to high-dimensional systems. The rolling pin method, 

briefly reviewed in Section 6.2, allows one to model complex joint probability 

distributions and therefore can be used to identify regression models using Eq.(6.13).  

The next paragraphs explain how this can be achieved. 

Let                  be the vector of monotonized variables derived through 

the application of the monotonization transformation to         using the vector of 
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monotonizing parameters                        . Hence, according to Eq.(6.8), 

the estimated joint density function of the system of inputs and output,        is defined as 

                                                 
 
          

     

     
        

                 
                

    
 
    

                   
         

     

             
        

    
           

                
    

 
    (6.14) 

where    
     and    

    , the marginal CDF and marginal density function of   , can be 

estimated non-parametrically from data.   and   denote the parametric-copula CDF and 

density function that are chosen to model the dependence structure of the components of 

the random  , respectively. Conditioned on the choice of the reference variable    

from        , a simple parametric copula such as the normal copula or comonotonicity 

copula will be appropriate to approximate the pairwise and joint dependence structures 

of  . The estimated joint probability density function of  ,   , can be defined in a similar 

way: 

                                       
 
     

      
           

                 
    

 
     (6.15) 

where         is the joint density function of            and              is the 

marginalized copula density given by: 

                                        
          

      
                  

     

             
    

  (6.16) 

where    is a  -copula derived from   by marginalizing   with respect to    
: 
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        (6.17) 

Using Eqs. (6.14)-(6.17), the regression function,       can be defined as: 

                         
  

  
 

              
    

               
        

     

                
     

   
  

  
 

              
        

        
    

        
          

        
  

  
  (6.18) 

where     
        

 is the conditional copula density. For a given and constant   , we 

have 

                                                       
   

  
            (6.19) 

and therefore  

           

       
        

        
    

        
          

         

  

  

    
         

      
      

        
    

        
          

         
       

  

  

            
        

    
        

          
       

(6.20)  

where        
         

      
   With the assumptions of Eq.(6.10) and       , Eq.(6.20) 

states that the regression model,     , is the expectation (mean) of the random variable 

         
        

    
        

          
     . The calculation of this function 

requires analytical (if possible) or numerical integration of Eq.(6.20). However, one can 
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compute the expectation function empirically, i.e. using the samples of the random 

variable   : 

                     
 

 
            

        
    

          
          

      
    (6.21) 

where     and   denote the empirical regression model and number of samples in the 

dataset, respectively.      (                   , where     ,    and      are the  -

th samples of   ,   and   , respectively. When calculating    care must be taken to set the 

term        with respect to    but not to     . 

6.3.1. Using the Copula CDF to Identify   

There are cases that the copula (CDF) function is available instead of the copula density 

or it is easier to work with. In such cases the regression model   can be estimated as 

follows. First, the conditional copula CDF of the transformed output variable    
 given 

   
          

     is defined as: 

     
    

          
           

        
      

          
       

   
 

 

 
               

       

                
     

  
   
 

 

             
   

           

              
 

           

    (22) 

     
    

          
      can then be sampled at a desired point of            (or 

equivalently            ). These samples are transformed back to    and   using the 

inverse CDF of    and the inverse monotonization transformation. The empirical mean of 

these samples give an estimation of the regression function,            . 
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6.4.  Confidence Intervals of the Regression Model 

As the semi-parametric method of identifying a regression model outlined in the previous 

sections employs a joint probability model to estimate     , it provides a natural basis 

for treating the confidence intervals of the regression model. The confidence interval 

                 is defined by a lower and an upper bound and is used to measure how 

narrowly            is distributed around its expected value,     . A narrower density 

           (lower variance) is indicator of a more accurate estimate of     . Therefore, 

     and      are defined as: 

                                                                  
 

  
 (6.23) 

                                                                   
 

  
  (6.24) 

where                        
        

        
    

        
          

     .   and 

  are fixed lower and upper probability bounds and independent of  . For example, the 

user may set these values equal to      and     , respectively.  

6.5. Properties of the Method of Regression Model Identification 

Modeling highly nonlinear and non-monotonic relationships: The regression model 

identification (estimation) method provides a semi-parametric tool for modeling highly 

nonlinear and non-monotonic relationships among input and output variables. This is 

performed by adjusting the monotonizing parameters to some adequately large values. 

According to this approach, the only requirement for modeling more nonlinear 

relationships is to use large enough monotonizing parameter values which assure the 

strictly increasing transformed variables, rather than the convention of utilizing more 
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intricate models with numerous parameters. For example, to derive the regression model 

with one input variable and one output variable, only one monotonizing parameter and a 

total of four parameters are required, regardless of the complexity of the input-output 

relationship. 

Model selection: A great deal of work on the development of regression models 

has been dedicated to parametric models, which use a particular mathematical equation to 

relate the input and output variables. Such an equation always has parameters that should 

be trained with respect to the data using a goodness-of-fit measure. In general, more 

sophisticated models are required for describing more complicated systems. As a result, a 

model selection scheme must be applied prior to the model training step. Besides the 

uncertainties carried by such a model selection step, it tends to be computationally 

expensive and may lead to unnecessarily complex models, particularly when the model is 

black-box. On the other hand, the proposed method uses a probabilistic model (the rolling 

pin joint probability distribution) to identify a regression model. It has been shown in 

Chapter 4 that with appropriate values of the monotonizing parameters, the actual 

multidimensional dependence structure can be approximated by a single parametric 

copula, chosen from the set of symmetric parametric copulas.  

Tractability: The computational tractability of the proposed regression model 

identification method is appealing. A rolling pin distribution is modeled with a number of 

parameters of the order as low as      . This number arises from   monotonizing 

parameters,     smoothing parameters of the marginal distributions (when the kernel 

method is used. This number will be linearly proportional to   if empirical distribution is 
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employed) and     
 

  correlation or association parameters of the copula function. This 

feature becomes more appealing when   grows. Not only is it useful when training the 

joint probability model, but it also renders of the proposed regression model 

identification method less computationally expensive.  

Convergence rate: although there is no generally accepted method to find the 

minimum number of observations   with respect to the number of the independent 

variables  , one may use the rule of thumb proposed by reference 26 to calculate the 

sample size as           , where m is the sample size to model a bivariate system 

with one input variable.   

Modeling the probabilistic behavior of a regression model: Unlike many 

conventional regression-model identification methods which offer a point estimate of the 

regression model, the proposed method provides a unified framework to simultaneously 

identify a regression model and estimate the model statistical characteristics, through the 

conditional probability density           . This function helps to investigate the quality of 

the regression model from a fully statistical point of view; that is, a complete 

probabilistic profile of the behavior of the output variable   is derived at each point 

           by means of the information encoded in           . As a result, statistical 

characteristics such as the variance, confidence intervals, skewness, kurtosis, etc. of this 

function may be computed easily whenever necessary. 
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6.6.  Examples 

This section aims at demonstrating the application and performance of the proposed 

regression-model identification method using two examples, a mathematical example and 

a realistic biological system. The quality of the identified regression models is assessed 

both qualitatively (through visually comparing the predictions of the models with the 

actual data/function) and quantitatively (by means of evaluating the residuals and 

confidence bounds). Also, the cases of univariate and multivariate inputs are considered 

in these examples. 

6.6.1. Mathematical Example 

Consider a bivariate system where the input variable   affects the output variable   

through a function      and a random noise function  : 

                                                                       (25) 

where                         and            .        denotes a Gaussian 

distribution with the mean   and standard deviation  .    has a            

distribution, where            denotes a Gamma distribution with the shape and scale 

factors equal to   and  , respectively. 

Assume that 500 samples are available for the pair of random variables   and  . 

First, 500 samples of   are generated using the            distribution. Second, 500 

samples of   are generated using the           distribution. Third, 500 samples of   are 

generated using Eq. (6.25). These 500   and   samples are shown in Figure 6.1, where 

the solid line represents         Drawing the   samples from such a Gamma 
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distribution is a way to exemplify cases where obtaining samples from the predictors 

becomes increasingly infeasible with the increase in the predictor magnitude. 

The 500        samples are then used to identify the regression model 

governing their dependence. To develop the needed rolling pin joint distribution, the 

following assumptions are made. First, the marginal probability densities are estimated 

using a nonparametric method, which is the Gaussian kernel method here. Second, a 

specific parametric copula and its corresponding parameters are used to approximate the 

input-output dependence structure. Third, the noise function is assumed to have a mean 

of zero. Fourth, it is assumed that the   samples have been collected with no error.  Note 

that no assumption is made about the family to which the noise function belongs to or 

about the noise (error) and the input variable relationship.  

The first step in applying the rolling pin method is to select the reference variable. 

This variable can be found systematically using the methods described in Chapter 4. Here 

we use   as the reference variable. Then, samples of   are monotonized with respect to 

the   samples using the monotonizing parameter.  



209 
 

 
 

 

Figure 6.1: Actual function (with no additive noise) and 500 samples of Example 4.1. 
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The selection of    can be carried out through multiple ways. In this example, 

this value is determined optimally using the maximum likelihood estimation (MLE) 

method described in Chapter 4. Applying the MLE method requires the user to select the 

parametric copula function beforehand. Alternatively, one can use the correlation-based 

methods to find and appropriate monotonizing parameter according to Chapter 4. To 

illustrate the effect of the selected copula on the final regression model, we use two well-

known parametric copulas from the elliptical family, i.e. the Gaussian and student’s t 

copulas. These copulas are symmetrical, so they are appropriate for our purpose which is 

to model the dependence structure of the monotonized variables. Using such copulas 

allows us to study the tail dependence effect (which the Gaussian copula lacks and the t 

copula possesses) on the identified regression model behavior, especially at the extremes 

(very low and very high values of the input variable). The rest of the MLE procedure is as 

follows. For each  , the samples of the transformed variable              are 

calculated. The marginal probability densities of   and    are then estimated using the 

nonparametric Gaussian kernels. The marginal distributions are then used to transform   

and    data to the data in the    and    
 space, where the copula function is applied. As 

both Gaussian and t copulas are elliptical, the strength of the dependence is determined 

by the Spearman’s rank correlation matrix. When the copulas are trained by this rank 

correlation matrix, together with the estimated marginal densities they are used to 

compute the likelihood of   given the data of   and   . Eventually, the value of   which 

maximizes the likelihood function globally is adopted as the MLE     and the 

corresponding joint distribution is the rolling pin distribution. Taking these steps leads to 

the MLE monotonizing parameters         and         for the Gaussian and t 
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copulas, respectively.   ’s can also be calculated using non-MLE-based methods in 

Chapter 4. 

We then apply Eq. (6.20) or Eq.(6.21) to obtain the deterministic regression 

model     . The calculated regression models and their 99% confidence bounds are 

depicted in Figures 6.2 and 6.3 for the Gaussian and t copula-derived rolling pin 

distributions. It can be observed that the t copula-derived regression function models the 

underlying function   more accurately. This can be confirmed quantitatively by a 

measure of error such as the sum of square errors (SSE). Table 6.1 compares the 

goodness-of-fit of the Gaussian and t copula-derived regression models in terms of their 

SSE values. For both cases, it can be seen that the identified regression models can 

capture the      behavior, and the quality of the predictions is higher in the regions with 

higher number of data points. As the t copula has the property of tail dependence, in the 

regions where the data density decreases the quality of the prediction is higher than that 

of the Gaussian copula which lacks this property. Therefore, it can be concluded that for 

cases where the input variable(s) data is not distributed uniformly, as in this case, the t 

copula may offer a better estimate of a regression model.  

We also compared the identified (estimated) regression models with some 

traditional parametric regression models, in terms of prediction quality and number of 

model parameters. Figure 6.4 compares predictions of the regression model obtained 

using the proposed method with those of a polynomial of order 9 model, a Gaussian 

model, and a rational regression model: 
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Table 6.1: Comparison of the number of parameters and goodness-of-fit measures of the different 

regression methods used in the first example. 

Method 
No. of 

parameters 

Goodness 

of fit 

(SSE) 

Rolling pin method-based 

(Gaussian copula) 
4 1.132 

Rolling pin method-based (t 

copula) 
4 0.535 

9th-order polynomial 10 4.461 

5 degree numerator 5 degree 

denominator rational 
11 2.908 

8-term Gaussian 24 2.756 

 

Polynomial of order 9: 

                                                                   
  

    (6.26) 

Gaussian model:  

                                                               
    

  
 

 
  

    (6.27) 

Rational regression function: 

                                                 
                               

                              
  (6.28)  

It can be seen that our proposed copula-based regression model presents the closest fit 

to     . As listed in Table 6.1, this is indicated by the SSE values for the regression 

models. An argument should also be made about the computational complexity of the 

parameter learning step of the above regression models. All the parametric models 

utilized in this example suffer from an exponential growth of the number of parameters 
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with the system dimension  . This is not only a serious problem when training the 

models for high-dimensional systems; it also restricts the applicability of the parametric 

models for high-dimensional and complicated systems. This restriction is twofold. First, 

an exponential growth in the number of parameters will significantly decelerate the 

model selection process; that is, greater number of parameters considerably slows down 

the quantification of a candidate model at different points in the input variable domain 

which is required for the model evaluation. On the other hand, such a high-dimensional 

regression model is difficult to quantify at a desired point in the input variable space. This 

fact makes these parametric models less computationally favorable for online  

 

Figure 6.2: Actual function, Gaussian copula-based RP regression model, 99% confidence 

interval, and prediction error for Example 4.1. 
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Figure 6.3: Actual function, student’s t copula-based RP regression model, 99% confidence 

interval, and prediction error for Example 4.1. 
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Figure 6.4: Comparison of the predictions of the RP-based regression models and several linear 

and nonlinear parametric regression models. 
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applications. However, it should be mentioned that since our method is semi-parametric, 

its convergence rate to the actual underlying function is slower than parametric models 

with respect to the number of samples  , as part of the information encoded in the data 

has to be utilized to determine the non-parametric marginal densities “forms”. This is a 

common pitfall of the non-parametric estimation techniques; however the fact that the 

proposed model has a parametric part renders this less problematic than purely non-

parametric methods. Therefore, the proposed method combines the tractability of 

parametric methods and the flexibility of non-parametric methods, besides its intrinsic 

capabilities resulting from the monotonization transformation. 

6.6.2. Biological System Example  

This biological system consists of a common enzymatic reaction.
28

 The objective is to 

quantify the dependence of the enzyme activity on the environment temperature and   . 

Consider a case where the enzyme   participates in a two-stage protonation reaction. It is 

assumed that the substrate is available in an excess amount and its effect on the enzyme 

activity is insignificant. The protonation reactions are reversible and undergo the 

chemical equilibrium: 

                                                     
  
       

  
           (6.29) 

where    and     denote the equilibrium constants for the first and second deprotonation 

reactions. Assuming the enzyme reacts with the substrate only in its     form, the rate 

of this reaction is defined as 
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     (6.30) 

where      (Peterson et al. (2007)),     and    are given by:  

                                     

        
     

  
         

         
       

  
      

         
 

         
 (6.31) 

                                                                 
     

 

   
 

 

 
 

 
   (6.32) 

                                                                        
   

  
  (6.33)   

                                                                        
   

  
    (6.34) 

Definitions, values and units of the constants used in Eqs. 6.31-6.34 are given in Table 

6.2 based on reference 28. It can be seen from these equations that            , such 

that this functionality is non-monotonic with respect to   and   . We assume that: 

                                                                             (6.35) 

                                                                                                                 (6.36)  

Since           is a deterministic function, we add some uncertainty to the dependence 

of  : 

                                                                            (6.37) 

where             is a white noise. 

To generate a noise-included data set, we simulated 1,000 samples of the triplet 

           at         using an approach similar to the one employed in the 

mathematical example. Figures 6.5a-6.5c depict samples of            normalized 
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according to Section 6.2. The non-monotonic behavior of the function           is 

clearly seen from the dome-shaped surface of   shown in Figure 6.6a. 

 

Table 6.2: Parameters and constants of Example 6.6.2. 

 

 

 

 

 

 

 

 

Parameter Definition Value (Unit) 

      
Gibbs free energy of enzyme 

catalysis 
68.9  (      ) 

        
Gibbs free energy of enzyme 

inactivation 
93.7 (      ) 

     enthalpy of the equilibrium 138.2 (      ) 

    
temperature at which active and 

inactive enzyme concentration are 

equal 

325 ( ) 

  gas universal constant 8.314 (       ) 

     initial enzyme concentration 5.5 10-2 (      ) 

  Planck constant 
6.62606957 10-34 (     

 ) 

   Boltzmann constant 
1.3806488 10-23 (     

   ) 

    activation energy difference 17 (      ) 

    activation energy difference 28.5 (      ) 
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Using this set of 1,000 samples to identify the regression model         is 

pretty similar the first example. Note that to avoid any round-off error resulting from the 

difference in the orders of magnitude of  ,    and   , all these calculations are 

performed using the normalized data of these variables, as described in Section 6.2. The 

following steps are then taken to obtain  : 

1. The first step is to select the reference variable. As the input variables are 

considered independent, it makes more sense to monotonize all variable with 

respect to a variable that already known to be connected to other variables in 

some way; i.e. the output variable,    . 

2. With    as the reference variable and using the MLE method and the t copula, the 

monotonizing parameters of the normalized  and    are obtained to be      

     and           , respectively. Figures 6.5d-6.5f shows the data of the 

monotonized variables             
 
. 

3. Once the monotonized variables data become available, using the probability 

integral transform (which is applied via the marginal densities of   ,     and     

derived by the non-parametric Gaussian kernel method) transforms the data into 

the space where the copula is applied. Figures 6.5g-6.5i show the data points of 

these transformed variables    
,     

 and     
. 

4. Since the Gaussian copula belongs to the elliptical family, its parameters can be 

estimated as the elements of the Spearman’s rank correlation matrix, which are 

                                       
                      
                   
                  

                      

5. At this stage,             is calculated using Eq. (6.8). 
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6.             can now be employed to identify the regression model          

using Eq. (6.21).  

Figure 6.6b shows the resulting regression-model predictions. To visually compare 

        with            the absolute difference between           and the 

regression function predictions are shown vs.   and    in Figure 6.6c. As expected, the 

magnitude of the error increases as the input variables approach the boundary of the 

observed data set. This makes a perfect sense; the uncertainty of the estimation 

significantly increases in regions where less data points are available. One can see that 

such a deviation is inevitable, even though a copula with strong tail dependence such as 

the t copula is employed as the parametric part of the model. The performance of such 

models will be improved if the data used are distributed uniformly. This is often possible 

through active learning, where the input variables can be manipulated such that a uniform 

distribution of their data is applied to the system (compare that with Gaussian distribution 

of   and     that we used in this example). 
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Figure 6.5: Normalized variables data: (a)     vs.   , (b)     vs.    , and (c)     vs.   .  

Monotonized data: (d)     
 vs.    

, (e)      vs.     
, and (f)      vs.    

. Probability integral 

transforms of the data: (d)      
vs.      

, (e)      
 vs.      

, and (f)      
 vs.     

. 
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Figure 6.6: (a) Actual enzyme activity in Example 4.2 vs. temperature and pH, (b) the identified-

regression-model predictions of the enzyme activity, and (c) absolute error in the predicted 

enzyme activity. 
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6.7.  Conclusions 

In this chapter we proposed a new method of regression model identification based on a 

joint probability distribution of the data estimated using our previously-introduced rolling 

pin method. This regression model identification method has several appealing features. 

First, it is capable of modeling nonmonotonicity, and it does so without adding 

complexity to the functional form of the regression model. Second, as the rolling pin 

method does not assume any limitations on the heteroskedasticity of the data, the 

identified regression models can take into account more complicated noise terms whose 

probability density depends on the input variables. Third, a single parametric copula is 

used to model unidentified dependence structure of the input and output variables. 

Fourth, since the regression model is obtained using a joint probability distribution, this 

joint probability distribution can be used readily to calculate the confidence intervals of 

the model identification (estimation). Fifth, different pairwise dependence structure of the 

domain variables can be modeled using a single symmetric parametric copula. Sixth, the 

modeling computational complexity grows rather slowly by      ,  where   is the 

dimension of the input-variable vector. 
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Chapter 7: Concluding Remarks and Future Directions 

 

The way we treat variables in our surrounding world profoundly affects our 

understanding of the phenomena and analyses and decision making processes.  One 

major way of such treatments is to divide variables into deterministic and probabilistic 

(stochastic) quantities. By definition, a deterministic variable is specified using a single 

characteristic (numerical or qualitative value) while probabilistic (random) variables are 

fully specified only through their probability distributions. Deterministic and probabilistic 

variables give rise to two totally different classes of models, called deterministic and 

probabilistic models, respectively. Whether deterministic or probabilistic, all models aim 

to provide most accurate description of the system under study. To this end, models 

gather facts and speculations about the system structure and integrate them into a 

meaningful and well-defined framework. Examples of such facts are the laws of physics 

and the way inputs (causes) and outputs (effects) interact. In that sense, one can consider 

a model as a qualitative or quantitative mathematical framework to represent a system or 

describe its cause-effect relationships. 

A deterministic model assigns so called point estimates to the filed variables. 

While being the basis of modeling for centuries, this assumption is acceptable only when 

there is no uncertainty associated with the variables. Any uncertainty of any type would 

dramatically reduce the credibility and reliability of the deterministic models and their 

predictions. Comparatively, probabilistic models have a relatively shorter history; they 

appeared about a century ago and their widespread use was not practical until a few 

decades ago due to the lack of sufficient theoretical background and computational 
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power. A probabilistic model assigns a probability distribution to each (random) variable 

instead of a point estimate. This probability distribution encodes important information 

about the likelihood of each of the possible values (states) of the variable. In other words, 

from the perspective of a probabilistic model the random variable can probably take any 

of its states, with the condition of higher chance for the states with higher probability.  

Probabilistic models are essential modeling tools in the modern day. This arises 

from different factors which more or less are related to a change of perspective which has 

led to recognizing the real-world variables as probabilistic rather than deterministic. First, 

when dealing with real-world variables, we often have to rely on the sensor 

measurements. There are multiple sources of uncertainty associated with sensors 

including random errors and systematic biases. These will render the measured variables 

a random variable. Second, even though a system could be modeled deterministically, an 

accurate representation requires the model to account for so many details. For example, 

deterministic modeling of throwing a dice requires one to consider accurate 

measurements of the initial conditions along with complicated motion equations and 

precise knowledge of air flow patterns around the dice. Since this level of accuracy is 

impossible and the simplified deterministic model would bear a great deal of uncertainty 

in it, a probabilistic model seem to be an appropriate replacement to represent such a 

system. Third, human knowledge is not unlimited; that is, there is always a level of 

uncertainty tied with any fact or bit of knowledge. For example, waiting for a bus, no one 

is sure about the exact arrival time of the next bus. This type of uncertainty is usually 

called epistemic uncertainty.  



228 
 

 
 

Whether deductive or empirical, probabilistic models strongly rely on probability 

distributions to work properly and accurately. With an increase in popularity of 

probabilistic modeling, probability distribution estimation has become an active area in 

information technology and knowledge engineering. Obviously, accurate probability 

estimation becomes more important and more challenging as the dimensions of the 

system grow. When the probabilistic model of a multidimensional system (   ) is 

sought, the corresponding probability distribution is called multivariate or joint 

probability distribution.  

In mathematical jargon, a probabilistic model is defined as the pair        where 

  is the sample space, the set of all possible events (values or states) the model can take, 

and   is the probability distribution over the sample space.   encodes the essential 

information needed to develop a probabilistic model and perform probabilistic inference 

as it captures the qualitative and quantities aspects of the interaction among the system 

components. In a few cases the true probability distribution of the system can be 

identified, but usually     represents an approximation or simplification of the actual 

system probabilistic behavior. If   is multidimensional, the corresponding   is called the 

joint probability distribution of the system. These dimensions may arise from different 

quantities present in the system (such as temperature, pressure, etc.), multiple spatial 

dimensions (as in 2-dimentional or 3-dimensional systems) or presence of dynamic 

behavior in the system under study. Therefore, using an appropriate   , one can model the 

spatial distributions, quantify relationships among variables or predict the time evolution 

of dynamic systems. Considering the importance of estimation of high-dimensional 

distributions in a meaningful, interpretable and accurate manner, a large variety of 
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estimation methods has emerged in the literature. Joint probability distributions can be 

estimated parametrically, non-parametrically or semi-parametrically.  

This research has introduced novel computationally-efficient and flexible methods 

of estimating joint probability distribution of highly nonlinear and non-monotonic 

systems of continuous and discrete random variables. There is a broad range of 

applications for these methods in probabilistic modeling and inference in systems with 

stochastic behavior. As discussed in detail in this treatise, these methods offer many 

advantages over their well-known counterparts such as the original parametric copula 

method, Bayesian networks and nonparametric techniques of joint probability estimation. 

The methods offer a powerful tool in modeling multivariate joint probability distributions 

with arbitrary and not necessarily known pairwise dependence structures among the 

variables. This implies that the methods need no knowledge of the exact dependence 

structures and the pairwise sameness throughout the system variables. More importantly, 

the methods are capable of modeling non-monotonic interactions, which cannot be 

modeled by the conventional parametric copulas. 

Future Directions 

As discussed in this treatise, so far my research has mainly focused on addressing the 

most important problems with the Bayesian Networks and copulas. This includes 

introducing several methods for rare event probability estimation, developing methods to 

estimate joint probability distributions of variables with unknown causal structures and/or 

complex non-monotonic relationships, reducing the computational cost, etc.. Each of 

these newly developed joint probability distribution estimation methods exhibit higher 

flexibility, interpretability and tractability compared to their original BN and copula 
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counterparts. As shown by examples in our published journal papers, these methods can 

be readily used to do probabilistic modeling and perform risk analysis for systems 

operating in steady-states mode.  

My recommended future direction is to apply these methods to perform 

probabilistic modeling and inference for time-varying process systems, which includes: 

1) Defining a general mathematical framework to employ the developed joint 

probability modeling methods to construct dynamic stochastic models (such as 

Markov processes). 

2) Applying the constructed model to some well-known and important process systems 

such as fluidized beds, bubbling beds, CSTRs and PFRs, etc. 

3) Performing risk analysis for the stochastically modeled dynamic systems. 

Also, the following topics have a good potential as the basis to extend the 

research presented in this thesis: 

1) Generalizing the rolling pin method to discrete random variables and the mixture of 

continuous and discrete random variables 

2) Applying the rolling pin methods to non-functions: the rolling pin method in its 

current definition is best applied to the functions; that is, the systems where for each 

input entry there is only one output (such as       ). Also the method works 

properly for non-functions whose inverse is a function (e.g.         ). Algorithms 

to apply the method to the systems which are not of the types above (such as    

     ) will be of research interest. 
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