705 research outputs found

    An empirical study of algorithms for point feature label placement

    Get PDF
    A major factor affecting the clarity of graphical displays that include text labels is the degree to which labels obscure display features (including other labels) as a result of spatial overlap. Point-feature label placement (PFLP) is the problem of placing text labels adjacent to point features on a map or diagram so as to maximize legibility. This problem occurs frequently in the production of many types of informational graphics, though it arises most often in automated cartography. In this paper we present a comprehensive treatment of the PFLP problem, viewed as a type of combinatorial optimization problem. Complexity analysis reveals that the basic PFLP problem and most interesting variants of it are NP-hard. These negative results help inform a survey of previously reported algorithms for PFLP; not surprisingly, all such algorithms either have exponential time complexity or are incomplete. To solve the PFLP problem in practice, then, we must rely on good heuristic methods. We propose two new methods, one based on a discrete form of gradient descent, the other on simulated annealing, and report on a series of empirical tests comparing these and the other known algorithms for the problem. Based on this study, the first to be conducted, we identify the best approaches as a function of available computation time.Engineering and Applied Science

    CAGD based 3-D visual recognition

    Get PDF
    Journal ArticleA coherent automated manufacturing system needs to include CAD/CAM, computer vision, and object manipulation. Currently, most systems which support CAD/CAM do not provide for vision or manipulation and similarly, vision and manipulation systems incorporate no explicit relation to CAD/CAM models. CAD/CAM systems have emerged which allow the designer to conceive and model an object and automatically manufacture the object to the prescribed specifications. If recognition or manipulation is to be performed, existing vision systems rely on models generated in an ad hoc manner for the vision or recognition process. Although both Vision and CAD/CAM systems rely on models of the objects involved, different modeling schemes are used in each case. A more unified system will allow vision models to be generated from the CAD database. We are implementing a framework in which objects are designed using an existing CAGD system and recognition strategies based on these design models are used for visual recognition and manipulation. An example of its application is given

    Proceedings of the 2nd Computer Science Student Workshop: Microsoft Istanbul, Turkey, April 9, 2011

    Get PDF

    Computer-aided design of cellular manufacturing layout.

    Get PDF

    Research in constraint-based layout, visualization, CAD, and related topics : a bibliographical survey

    Get PDF
    The present work compiles numerous papers in the area of computer-aided design, graphics, layout configuration, and user interfaces in general. There is nearly no conference on graphics, multimedia, and user interfaces that does not include a section on constraint-based graphics; on the other hand most conferences on constraint processing favour applications in graphics. This work of bibliographical pointers may serve as a basis for a detailed and comprehensive survey of this important and challenging field in the intersection of constraint processing and graphics. In order to reach this ambitious aim, and also to keep this study up-to-date, the authors appreciate any comment and update information

    Transformation of the university examination timetabling problem space through data pre-processing

    Get PDF
    This research investigates Examination Timetabling or Scheduling, with the aim of producing good quality, feasible timetables that satisfy hard constraints and various soft constraints. A novel approach to scheduling, that of transformation of the problem space, has been developed and evaluated for its effectiveness. The examination scheduling problem involves many constraints due to many relationships between students and exams, making it complex and expensive in terms of time and resources. Despite the extensive research in this area, it has been observed that most of the published methods do not produce good quality timetables consistently due to the utilisation of random-search. In this research we have avoided random-search and instead have proposed a systematic, deterministic approach to solving the examination scheduling problem. We pre-process data and constraints to generate more meaningful aggregated data constructs with better expressive power that minimise the need for cross-referencing original student and exam data at a later stage. Using such aggregated data and custom-designed mechanisms, the timetable construction is done systematically, while assuring its feasibility. Later, the timetable is optimized to improve the quality, focusing on maximizing the gap between consecutive exams. Our solution is always reproducible and displays a deterministic optimization pattern on all benchmark datasets. Transformation of the problem space into new aggregated data constructs through pre-processing represents the key novel contribution of this research
    corecore