229,783 research outputs found
Efficient methods of automatic calibration for rainfall-runoff modelling in the Floreon+ system
Calibration of rainfall-runoff model parameters is an inseparable part of hydrological simulations. To achieve more accurate results of these simulations, it is necessary to implement an efficient calibration method that provides sufficient refinement of the model parameters in a reasonable time frame. In order to perform the calibration repeatedly for large amount of data and provide results of calibrated model simulations for the flood warning process in a short time, the method also has to be automated. In this paper, several local and global optimization methods are tested for their efficiency. The main goal is to identify the most accurate method for the calibration process that provides accurate results in an operational time frame (typically less than 1 hour) to be used in the flood prediction Floreon(+) system. All calibrations were performed on the measured data during the rainfall events in 2010 in the Moravian-Silesian region (Czech Republic) using our in-house rainfall-runoff model.Web of Science27441339
Multi-Objective Calibration For Agent-Based Models
Agent-based modelling is already proving to be an immensely useful tool for scientific and industrial modelling applications. Whilst the building of such models will always be something between an art and a science, once a detailed model has been built, the process of parameter calibration should be performed as precisely as possible. This task is often made difficult by the proliferation of model parameters with non-linear interactions. In addition to this, these models generate a large number of outputs, and their ‘accuracy’ can be measured by many different, often conflicting, criteria. In this paper we demonstrate the use of multi-objective optimisation tools to calibrate just such an agent-based model. We use an agent-based model of a financial market as an exemplar and calibrate the model using a multi-objective genetic algorithm. The technique is automated and requires no explicit weighting of criteria prior to calibration. The final choice of parameter set can be made after calibration with the additional input of the domain expert
Recommended from our members
Toward improved streamflow forecasts: Value of semidistributed modeling
The focus of this study is to assess the performance improvements of semidistributed applications of the U.S. National Weather Service Sacramento Soil Moisture Accounting model on a watershed using radar-based remotely sensed precipitation data. Specifically, performance comparisons are made within an automated multicriteria calibration framework to evaluate the benefit of "spatial distribution" of the model input (precipitation), structural components (soil moisture and streamflow routing computations), and surface characteristics (parameters). A comparison of these results is made with those obtained through manual calibration. Results indicate that for the study watershed, there are performance improvements associated with semidistributed model applications when the watershed is partitioned into three subwatersheds; however, no additional benefit is gained from increasing the number of subwatersheds from three to eight. Improvements in model performance are demonstrably related to the spatial distribution of the model input and streamflow routing. Surprisingly, there is no improvement associated with the distribution of the surface characteristics (model parameters)
Recommended from our members
Multi-objective global optimization for hydrologic models
The development of automated (computer-based) calibration methods has focused mainly on the selection of a single-objective measure of the distance between the model-simulated output and the data and the selection of an automatic optimization algorithm to search for the parameter values which minimize that distance. However, practical experience with model calibration suggests that no single-objective function is adequate to measure the ways in which the model fails to match the important characteristics of the observed data. Given that some of the latest hydrologic models simulate several of the watershed output fluxes (e.g. water, energy, chemical constituents, etc.), there is a need for effective and efficient multi-objective calibration procedures capable of exploiting all of the useful information about the physical system contained in the measurement data time series. The MOCOM-UA algorithm, an effective and efficient methodology for solving the multiple-objective global optimization problem, is presented in this paper. The method is an extension of the successful SCE-UA single-objective global optimization algorithm. The features and capabilities of MOCOM-UA are illustrated by means of a simple hydrologic model calibration study
Calibration and uncertainty issues of a hydrological model (SWAT) applied to West Africa
International audienceDistributed hydrological models like SWAT (Soil and Water Assessment Tool) are often highly over-parameterized, making parameter specification and parameter estimation inevitable steps in model calibration. Manual calibration is almost infeasible due to the complexity of large-scale models with many objectives. Therefore we used a multi-site semi-automated inverse modelling routine (SUFI-2) for calibration and uncertainty analysis. Nevertheless, the question of when a model is sufficiently calibrated remains open, and requires a project dependent definition. Due to the non-uniqueness of effective parameter sets, parameter calibration and prediction uncertainty of a model are intimately related. We address some calibration and uncertainty issues using SWAT to model a four million km2 area in West Africa, including mainly the basins of the river Niger, Volta and Senegal. This model is a case study in a larger project with the goal of quantifying the amount of global country-based available freshwater. Annual and monthly simulations with the "calibrated" model for West Africa show promising results in respect of the freshwater quantification but also point out the importance of evaluating the conceptual model uncertainty as well as the parameter uncertainty
Half a billion simulations: evolutionary algorithms and distributed computing for calibrating the SimpopLocal geographical model
Multi-agent geographical models integrate very large numbers of spatial
interactions. In order to validate those models large amount of computing is
necessary for their simulation and calibration. Here a new data processing
chain including an automated calibration procedure is experimented on a
computational grid using evolutionary algorithms. This is applied for the first
time to a geographical model designed to simulate the evolution of an early
urban settlement system. The method enables us to reduce the computing time and
provides robust results. Using this method, we identify several parameter
settings that minimise three objective functions that quantify how closely the
model results match a reference pattern. As the values of each parameter in
different settings are very close, this estimation considerably reduces the
initial possible domain of variation of the parameters. The model is thus a
useful tool for further multiple applications on empirical historical
situations
Mapping evapotranspiration variability over a complex oasis-desert ecosystem based on automated calibration of Landsat 7 ETM+ data in SEBAL
Fragmented ecosystems of the desiccated Aral Sea seek answers to the profound local hydrologically- and water-related problems. Particularly, in the Small Aral Sea Basin (SASB), these problems are associated with low precipitation, increased temperature, land use and evapotranspiration (ET) changes. Here, the utility of high-resolution satellite dataset is employed to model the growing season dynamic of near-surface fluxes controlled by the advective effects of desert and oasis ecosystems in the SASB. This study adapted and applied the sensible heat flux calibration mechanism of Surface Energy Balance Algorithm for Land (SEBAL) to 16 clear-sky Landsat 7 ETM+ dataset, following a guided automatic pixels search from surface temperature T-s and Normalized Difference Vegetation Index NDVI (). Results were comprehensively validated with flux components and actual ET (ETa) outputs of Eddy Covariance (EC) and Meteorological Station (KZL) observations located in the desert and oasis, respectively. Compared with the original SEBAL, a noteworthy enhancement of flux estimations was achieved as follows: - desert ecosystem ETa R-2 = 0.94; oasis ecosystem ETa R-2 = 0.98 (P < 0.05). The improvement uncovered the exact land use contributions to ETa variability, with average estimates ranging from 1.24 mm to 6.98 mm . Additionally, instantaneous ET to NDVI (ETins-NDVI) ratio indicated that desert and oasis consumptive water use vary significantly with time of the season. This study indicates the possibility of continuous daily ET monitoring with considerable implications for improving water resources decision support over complex data-scarce drylands
- …
