2,087 research outputs found

    Robust Approach for Rotor Mapping in Cardiac Tissue

    Full text link
    The motion of and interaction between phase singularities that anchor spiral waves captures many qualitative and, in some cases, quantitative features of complex dynamics in excitable systems. Being able to accurately reconstruct their position is thus quite important, even if the data are noisy and sparse, as in electrophysiology studies of cardiac arrhythmias, for instance. A recently proposed global topological approach [Marcotte & Grigoriev, Chaos 27, 093936 (2017)] promises to dramatically improve the quality of the reconstruction compared with traditional, local approaches. Indeed, we found that this approach is capable of handling noise levels exceeding the range of the signal with minimal loss of accuracy. Moreover, it also works successfully with data sampled on sparse grids with spacing comparable to the mean separation between the phase singularities for complex patterns featuring multiple interacting spiral waves

    Analysis of detector performance in a gigahertz clock rate quantum key distribution system

    Get PDF
    We present a detailed analysis of a gigahertz clock rate environmentally robust phase-encoded quantum key distribution (QKD) system utilizing several different single-photon detectors, including the first implementation of an experimental resonant cavity thin-junction silicon single-photon avalanche diode. The system operates at a wavelength of 850 nm using standard telecommunications optical fibre. A general-purpose theoretical model for the performance of QKD systems is presented with reference to these experimental results before predictions are made about realistic detector developments in this system. We discuss, with reference to the theoretical model, how detector operating parameters can be further optimized to maximize key exchange rates

    Magnetic Calorimeter Option for the Lynx X-Ray Microcalorimeter

    Get PDF
    One option for the detector technology to implement the Lynx x-ray microcalorimeter (LXM) focal plane arrays is the metallic magnetic calorimeter (MMC). Two-dimensional imaging arrays of MMCs measure the energy of x-ray photons by using a paramagnetic sensor to detect the temperature rise in a microfabricated x-ray absorber. While small arrays of MMCs have previously been demonstrated that have energy resolution better than the 3 eV requirement for LXM, we describe LXM prototype MMC arrays that have 55,800 x-ray pixels, thermally linked to 5688 sensors in hydra configurations, and that have sensor inductance increased to avoid signal loss from the stray inductance in the large-scale arrays when the detectors are read out with microwave superconducting quantum interference device multiplexers, and that use multilevel planarized superconducting wiring to provide low-inductance, low-crosstalk connections to each pixel. We describe the features of recently tested MMC prototype devices and simulations of expected performance in designs opti- mized for the three subarray types in LXM

    High rate, long-distance quantum key distribution over 250km of ultra low loss fibres

    Full text link
    We present a fully automated quantum key distribution prototype running at 625 MHz clock rate. Taking advantage of ultra low loss fibres and low-noise superconducting detectors, we can distribute 6,000 secret bits per second over 100 km and 15 bits per second over 250km

    A robotics platform for automated batch fabrication of high density, microfluidics-based DNA microarrays, with applications to single cell, multiplex assays of secreted proteins

    Get PDF
    Microfluidics flow-patterning has been utilized for the construction of chip-scale miniaturized DNA and protein barcode arrays. Such arrays have been used for specific clinical and fundamental investigations in which many proteins are assayed from single cells or other small sample sizes. However, flow-patterned arrays are hand-prepared, and so are impractical for broad applications. We describe an integrated robotics/microfluidics platform for the automated preparation of such arrays, and we apply it to the batch fabrication of up to eighteen chips of flow-patterned DNA barcodes. The resulting substrates are comparable in quality with hand-made arrays and exhibit excellent substrate-to-substrate consistency. We demonstrate the utility and reproducibility of robotics-patterned barcodes by utilizing two flow-patterned chips for highly parallel assays of a panel of secreted proteins from single macrophage cells

    A Reverse Hex Solver

    Full text link
    We present Solrex,an automated solver for the game of Reverse Hex.Reverse Hex, also known as Rex, or Misere Hex, is the variant of the game of Hex in which the player who joins her two sides loses the game. Solrex performs a mini-max search of the state space using Scalable Parallel Depth First Proof Number Search, enhanced by the pruning of inferior moves and the early detection of certain winning strategies. Solrex is implemented on the same code base as the Hex program Solver, and can solve arbitrary positions on board sizes up to 6x6, with the hardest position taking less than four hours on four threads.Comment: Presented at Computers and Games 2016 Leiden, International Conference on Computers and Games. Springer International Publishing, 201

    An integrated study of earth resources in the state of California using remote sensing techniques

    Get PDF
    The University of California has been conducting an investigation which seeks to determine the usefulness of modern remote sensing techniques for studying various components of California's earth resources complex. Most of the work has concentrated on California's water resources, but with some attention being given to other earth resources as well and to the interplay between them and California's water resources

    A multi-scale filament extraction method: getfilaments

    Get PDF
    Far-infrared imaging surveys of Galactic star-forming regions with Herschel have shown that a substantial part of the cold interstellar medium appears as a fascinating web of omnipresent filamentary structures. This highly anisotropic ingredient of the interstellar material further complicates the difficult problem of the systematic detection and measurement of dense cores in the strongly variable but (relatively) isotropic backgrounds. Observational evidence that stars form in dense filaments creates severe problems for automated source extraction methods that must reliably distinguish sources not only from fluctuating backgrounds and noise, but also from the filamentary structures. A previous paper presented the multi-scale, multi-wavelength source extraction method getsources based on a fine spatial scale decomposition and filtering of irrelevant scales from images. In this paper, a multi-scale, multi-wavelength filament extraction method getfilaments is presented that solves this problem, substantially improving the robustness of source extraction with getsources in filamentary backgrounds. The main difference is that the filaments extracted by getfilaments are now subtracted by getsources from detection images during source extraction, greatly reducing the chances of contaminating catalogs with spurious sources. The intimate physical relationship between forming stars and filaments seen in Herschel observations demands that accurate filament extraction methods must remove the contribution of sources and that accurate source extraction methods must be able to remove underlying filamentary structures. Source extraction with getsources now provides researchers also with clean images of filaments, free of sources, noise, and isotropic backgrounds.Comment: 15 pages, 19 figures, to be published in Astronomy & Astrophysics; language polished for better readabilit
    corecore