9 research outputs found

    Automatic summarization of rushes video using bipartite graphs

    Get PDF
    In this paper we present a new approach for automatic summarization of rushes video. Our approach is composed of three main steps. First, based on a temporal segmentation, we filter sub-shots with low information content not likely to be useful in a summary. Second, a method using maximal matching in a bipartite graph is adapted to measure similarity between the remaining shots and to minimize inter-shot redundancy by removing repetitive retake shots common in rushes content. Finally, the presence of faces and the motion intensity are characterised in each sub-shot. A measure of how representative the sub-shot is in the context of the overall video is then proposed. Video summaries composed of keyframe slideshows are then generated. In order to evaluate the effectiveness of this approach we re-run the evaluation carried out by the TREC, using the same dataset and evaluation metrics used in the TRECVID video summarization task in 2007 but with our own assessors. Results show that our approach leads to a significant improvement in terms of the fraction of the TRECVID summary ground truth included and is competitive with other approaches in TRECVID 2007

    Video summarization by group scoring

    Get PDF
    In this paper a new model for user-centered video summarization is presented. Involvement of more than one expert in generating the final video summary should be regarded as the main use case for this algorithm. This approach consists of three major steps. First, the video frames are scored by a group of operators. Next, these assigned scores are averaged to produce a singular value for each frame and lastly, the highest scored video frames alongside the corresponding audio and textual contents are extracted to be inserted into the summary. The effectiveness of this approach has been evaluated by comparing the video summaries generated by this system against the results from a number of automatic summarization tools that use different modalities for abstraction

    Audio Summarization with Audio Features and Probability Distribution Divergence

    Get PDF
    International audienceThe automatic summarization of multimedia sources is an important task that facilitates the understanding of an individual by condensing the source while maintaining relevant information. In this paper we focus on audio summarization based on audio features and the probability of distribution divergence. Our method, based on an extractive summarization approach, aims to select the most relevant segments until a time threshold is reached. It takes into account the segment's length, position and informativeness value. Informativeness of each segment is obtained by mapping a set of audio features issued from its Mel-frequency Cepstral Coefficients and their corresponding Jensen-Shannon divergence score. Results over a multi-evaluator scheme shows that our approach provides understandable and informative summaries

    Using Web Archives to Enrich the Live Web Experience Through Storytelling

    Get PDF
    Much of our cultural discourse occurs primarily on the Web. Thus, Web preservation is a fundamental precondition for multiple disciplines. Archiving Web pages into themed collections is a method for ensuring these resources are available for posterity. Services such as Archive-It exists to allow institutions to develop, curate, and preserve collections of Web resources. Understanding the contents and boundaries of these archived collections is a challenge for most people, resulting in the paradox of the larger the collection, the harder it is to understand. Meanwhile, as the sheer volume of data grows on the Web, storytelling is becoming a popular technique in social media for selecting Web resources to support a particular narrative or story . In this dissertation, we address the problem of understanding the archived collections through proposing the Dark and Stormy Archive (DSA) framework, in which we integrate storytelling social media and Web archives. In the DSA framework, we identify, evaluate, and select candidate Web pages from archived collections that summarize the holdings of these collections, arrange them in chronological order, and then visualize these pages using tools that users already are familiar with, such as Storify. To inform our work of generating stories from archived collections, we start by building a baseline for the structural characteristics of popular (i.e., receiving the most views) human-generated stories through investigating stories from Storify. Furthermore, we checked the entire population of Archive-It collections for better understanding the characteristics of the collections we intend to summarize. We then filter off-topic pages from the collections the using different methods to detect when an archived page in a collection has gone off-topic. We created a gold standard dataset from three Archive-It collections to evaluate the proposed methods at different thresholds. From the gold standard dataset, we identified five behaviors for the TimeMaps (a list of archived copies of a page) based on the page’s aboutness. Based on a dynamic slicing algorithm, we divide the collection and cluster the pages in each slice. We then select the best representative page from each cluster based on different quality metrics (e.g., the replay quality, and the quality of the generated snippet from the page). At the end, we put the selected pages in chronological order and visualize them using Storify. For evaluating the DSA framework, we obtained a ground truth dataset of hand-crafted stories from Archive-It collections generated by expert archivists. We used Amazon’s Mechanical Turk to evaluate the automatically generated stories against the stories that were created by domain experts. The results show that the automatically generated stories by the DSA are indistinguishable from those created by human subject domain experts, while at the same time both kinds of stories (automatic and human) are easily distinguished from randomly generated storie

    Automated video program summarization using speech transcripts

    No full text

    Multi-modal surrogates for retrieving and making sense of videos: is synchronization between the multiple modalities optimal?

    Get PDF
    Video surrogates can help people quickly make sense of the content of a video before downloading or seeking more detailed information. Visual and audio features of a video are primary information carriers and might become important components of video retrieval and video sense-making. In the past decades, most research and development efforts on video surrogates have focused on visual features of the video, and comparatively little work has been done on audio surrogates and examining their pros and cons in aiding users' retrieval and sense-making of digital videos. Even less work has been done on multi-modal surrogates, where more than one modality are employed for consuming the surrogates, for example, the audio and visual modalities. This research examined the effectiveness of a number of multi-modal surrogates, and investigated whether synchronization between the audio and visual channels is optimal. A user study was conducted to evaluate six different surrogates on a set of six recognition and inference tasks to answer two main research questions: (1) How do automatically-generated multi-modal surrogates compare to manually-generated ones in video retrieval and video sense-making? and (2) Does synchronization between multiple surrogate channels enhance or inhibit video retrieval and video sense-making? Forty-eight participants participated in the study, in which the surrogates were measured on the the time participants spent on experiencing the surrogates, the time participants spent on doing the tasks, participants' performance accuracy on the tasks, participants' confidence in their task responses, and participants' subjective ratings on the surrogates. On average, the uncoordinated surrogates were more helpful than the coordinated ones, but the manually-generated surrogates were only more helpful than the automatically-generated ones in terms of task completion time. Participants' subjective ratings were more favorable for the coordinated surrogate C2 (Magic A + V) and the uncoordinated surrogate U1 (Magic A + Storyboard V) with respect to usefulness, usability, enjoyment, and engagement. The post-session questionnaire comments demonstrated participants' preference for the coordinated surrogates, but the comments also revealed the value of having uncoordinated sensory channels
    corecore