49 research outputs found

    Combining hardware and software instrumentation to classify program executions

    Get PDF
    Several research efforts have studied ways to infer properties of software systems from program spectra gathered from the running systems, usually with software-level instrumentation. While these efforts appear to produce accurate classifications, detailed understanding of their costs and potential cost-benefit tradeoffs is lacking. In this work we present a hybrid instrumentation approach which uses hardware performance counters to gather program spectra at very low cost. This underlying data is further augmented with data captured by minimal amounts of software-level instrumentation. We also evaluate this hybrid approach by comparing it to other existing approaches. We conclude that these hybrid spectra can reliably distinguish failed executions from successful executions at a fraction of the runtime overhead cost of using software-based execution data

    Building test oracles by clustering failures

    Get PDF
    In recent years, software testing research has produced notable advances in the area of automated test data generation, but the corresponding oracle problem (a mechanism for determine the (in)correctness of an executed test case) is still a major problem. In this paper, we present a preliminary study which investigates the application of anomaly detection techniques (based on clustering) to automatically build an oracle using a system’s input/output pairs, based on the hypothesis that failures will tend to group into small clusters. The fault detection capability of the approach is evaluated on two systems and the findings reveal that failing outputs do indeed tend to congregate in small clusters, suggesting that the approach is feasible and has the potential to reduce by an order of magnitude the numbers of outputs that would need to be manually examined following a test run

    What Causes My Test Alarm? Automatic Cause Analysis for Test Alarms in System and Integration Testing

    Full text link
    Driven by new software development processes and testing in clouds, system and integration testing nowadays tends to produce enormous number of alarms. Such test alarms lay an almost unbearable burden on software testing engineers who have to manually analyze the causes of these alarms. The causes are critical because they decide which stakeholders are responsible to fix the bugs detected during the testing. In this paper, we present a novel approach that aims to relieve the burden by automating the procedure. Our approach, called Cause Analysis Model, exploits information retrieval techniques to efficiently infer test alarm causes based on test logs. We have developed a prototype and evaluated our tool on two industrial datasets with more than 14,000 test alarms. Experiments on the two datasets show that our tool achieves an accuracy of 58.3% and 65.8%, respectively, which outperforms the baseline algorithms by up to 13.3%. Our algorithm is also extremely efficient, spending about 0.1s per cause analysis. Due to the attractive experimental results, our industrial partner, a leading information and communication technology company in the world, has deployed the tool and it achieves an average accuracy of 72% after two months of running, nearly three times more accurate than a previous strategy based on regular expressions.Comment: 12 page

    Improved Duplicate Bug Report Identification

    Get PDF

    Piping classification to metamorphic testing: an empirical study towards better effectiveness for the identification of failures in mesh simplification programs

    Get PDF
    Mesh simplification is a mainstream technique to render graphics responsively in modern graphical software. However, the graphical nature of the output poses a test oracle problem in testing. Previous work uses pattern classification to identify failures. Although such an approach may be promising, it may conservatively mark the test result of a failure-causing test case as passed. This paper proposes a methodology that pipes the test cases marked as passed by the pattern classification component to a metamorphic testing component to look for missed failures. The empirical study uses three simple and general metamorphic relations as subjects, and the experimental results show a 10 percent improvement of effectiveness in the identification of failures. © 2007 IEEE.Link_to_subscribed_fulltextThis research is supported in part by a grant of the Research Grants Council of Hong Kong (project no. 714504), a grant of City University of Hong Kong (project no. 200079), and a grant of The University of Hong Kong
    corecore