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Abstract—In recent years, software testing research has pro-
duced notable advances in the area of automated test data
generation, but the corresponding oracle problem (a mechanism
for determine the (in)correctness of an executed test case) is
still a major problem. In this paper, we present a preliminary
study which investigates the application of anomaly detection
techniques (based on clustering) to automatically build an oracle
using a system’s input/output pairs, based on the hypothesis that
failures will tend to group into small clusters. The fault detection
capability of the approach is evaluated on two systems and the
findings reveal that failing outputs do indeed tend to congregate
in small clusters, suggesting that the approach is feasible and has
the potential to reduce by an order of magnitude the numbers
of outputs that would need to be manually examined following
a test run.

I. INTRODUCTION

Research in software testing has focused on automating

many aspects of the testing process such as generating and

executing test cases and maintaining and managing test suites.

A relatively neglected, but essential, aspect of testing is

the production of an oracle: a mechanism to determine the

(in)correctness of an output associated with an input. Whilst

there are tools capable of completely automatically generating

test inputs [1], few techniques exist to generate test oracles,

making the process of checking test outputs primarily human-

centred and consequently expensive and error prone [2].

Existing approaches to generate oracles range from the

inexpensive and ineffective to the effective but very costly.

At one end of the scale, specified oracles can be generated

from formal specifications [3], and are effective in identifying

failures, but defining and maintaining such specifications is

demanding and consequently such specifications are very

rare. At the other end, implicit oracles are easy to obtain at

practically no cost (e.g., the work of Carlos and Michael [4])

but are not able to identify semantic and complex failures,

revealing only general errors like system crashes, null pointer

dereferences or unhandled exceptions [3].

This paper reports on an empirical investigation into the use

of clustering to build an automated oracle based on a system’s

input/output pairs with the aim of finding a technique which

combines the effectiveness of a specified oracle and the cost

of an implicit one. The key hypothesis behind this work is

that normal data instances (passed tests) belong to large or

dense clusters, while anomalies (failed tests) belong to small

or sparse clusters. If this is true then the oracle problem may be

reduced significantly to the task of examining just the outputs

in the small clusters rather than all test outputs.

II. BACKGROUND AND RELATED WORK

Two extensive reviews of testing oracles exist: one by

Baresi and Young [2] and the other by Barr et al. [3] who

classified the existing literature on test oracles into three broad

categories: (1) specified oracles; (2) implicit oracles; and (3)

derived oracles.

Specified oracles are obtained from a formal specification

of the system behaviour. The ASTOOT tool, for instance,

generates test suites along with test oracles from algebraic

specifications [5]. Specified oracles are effective in finding

failures but their success depends heavily on the availability

of a formal specification: a limiting factor for most systems.

Implicit oracles are generated without reference to any

domain knowledge or specification and are widely applicable.

For example, the fuzzing approach proposed by Miller et

al. [6] generates random inputs to a system with the aim of

exposing weaknesses such as security vulnerabilities in the

form of buffer overflows and memory leaks.

Derived oracles are created from properties of the system,

artefacts other than the specification (e.g. documentation or

execution information), or other versions of the system under

test. For instance, metamorphic testing has been used to test

search engines such as Google and Yahoo [7]. Our work is

rooted in the area of oracles derived from system executions

which can be subdivided in two main sections: oracles based

on invariant detection and oracles based on anomaly detection.

A. Test Oracles Based on Invariant Detection

Invariants built into programs can be used to automatically

check behaviour and hence form a type of test oracle. Invari-

ants may be inserted into the code by developers but this can

be a costly and an additional burden. To address this, various

systems (examples include Daikon [8] and DIDUCE [9]) have

been developed which aim to automatically derive invariants

via dynamic analysis. These approaches have some common-

ality with the one presented in this paper but operate at white

box rather than a black box (system) level.

B. Test Oracles Based on Anomaly Detection Techniques

The main principle behind creating test oracles using this

approach is to identify items, events or observations which

do not conform to an expected pattern and therefore may

be indicative of faulty behaviour [10]. Existing work can be

classified in to three main categories of learning technique:

unsupervised, semi-supervised and supervised:



Unsupervised Learning Techniques do not require training

data, and thus are most widely applicable. They make the im-

plicit assumption that normal instances are far more frequent

than anomalies in the test data. Examples of such work include

that of Dickinson, Leon and Podgurski who demonstrated the

advantage of automated clustering of function caller/callee ex-

ecution profiles over random selection for finding failures [11],

[12]. This has similarities with our approach but uses execution

profiles rather than input/output pairs and furthermore is

focused on reliability estimation rather than exploring software

correctness. Yoo et al. also used a clustering approach to

the problem of regression test optimisation [13] where test

cases were clustered based on their dynamic runtime behaviour

(execution traces).

Semi-Supervised Learning Techniques assume that training

data has labelled instances for only the normal class (i.e. a

subset of passing test cases needs to be identified). A model

is built for the class that corresponds to normal behaviour

which is then used to identify anomalies in the subsequent

data. Examples include the work of Podgurski et al. on bug

clustering for the purposes of fault localisation [14], and of

Bowring and colleagues on reverse engineering [15].

Supervised Learning Techniques assume the availability of

a training data set which has labelled instances for normal

as well as anomaly classes and is therefore the least generally

applicable. This has been employed in regression testing where

a reference version of the software which makes for accurate

data labelling [16] and explored in the image processing

domain [17].

From the above it can be seen that there is a body of work

that explores the use of anomaly detection strategies to support

software testing, but these typically operate on quite different

types of data, or utilize semi-supervised or supervised learning

strategies, and the application to input/output pairs has not

been extensively investigated.

III. CLUSTER ANALYSIS

Clustering aims to partition a population of objects, each

containing various attributes, into groups in such way that

objects with similar attribute values are placed in the same

cluster, whereas those with dissimilar ones are placed in

different clusters [18]. The similarity of objects can be decided

by using different distance metrics and there are a large

variety of approaches towards clustering. So far this work has

only explored the use of the technique known as hierarchical

clustering – a stepwise process which can be divided into

two methods: agglomerative and divisive. The agglomerative

method initially assigns each object to its own cluster, cal-

culates the distance between two clusters, and combines the

most similar ones. This process is repeated until no close

similarity or dissimilarity between two clusters can be found.

The divisive method, on the other hand, initially assigns all

objects into one cluster and then divides this main cluster into

smaller clusters based on object dissimilarity until no further

splits can be made.

IV. EXPERIMENTAL INVESTIGATION

With the aim of exploring the main hypothesis behind

this work (normal data instances belong to large and dense

clusters, while anomalies either belong to small or sparse

clusters), and to understand the potential of this approach as

an effective oracle mechanism, a series of experiments was run

to evaluate the effectiveness of clustering techniques applied

to input/output pairs for isolating failures.

A. Subject Programs

Two medium size Java systems were used as subject pro-

grams: NanoXML and Siena. NanoXML is a non-GUI based

XML parser written in Java and available from the Software

Infrastructure Repository (SIR)1 which has 24 classes, 5

versions containing multiple faults, and 214 test cases. The

error rates in all faulty versions ranged from 31% to 39%.

The fourth version was excluded as it contains no faults.

Siena (Scalable Internet Event Notification Architecture) is

an event notification middleware, also available from the SIR

containing 26 classes (9 in its core and 17 which constitute

an application), 567 test cases and 7 faulty versions: 3 with a

single fault, and 4 with multiple ones. The first faulty version

was excluded from the experiments because the outputs are

indistinguishable from the original. The error rate in all

remaining versions was 17%.

Both systems also come with test suites – an important

factor in choosing these systems as having sets of good, but

independently created, tests is vital for this experiment.

B. Experimental Protocol

The basic principle of the experiment involved taking each

of the systems (original and faulty versions), running them on

the provided inputs to produce the outputs, and applying the

clustering algorithms to this resultant set of input/output pairs.

Since the failures associated with the faults are known, the

effectiveness of the clustering approach can then be evaluated.

This process is described in more detail below:

TABLE I: Example Coding of Input/Output Pairs

Input Output

Nanoxml Flower colour=”Red”

smell=”Sweet”

name=”Rose”

season=”Spring”

xml element name is:
Flower

Encoding FCRSSNRSS F

Siena Filter senp{x=0}filter{x=20

y=30 z=10} Event
senp{x=0}event{x=20}
senp{x=0}event{y=30 z=10}

subscribing for
filter{x=20 y=30

z=10}publishing for
event{x=20}publishing

for event {y=30 z=10}

Encoding F111E1E11 SF111PE1PE11

1http://sir.unl.edu/content/sir.php



1) Executing Test Cases: Both subject programs come with

Test Specification Language (TSL) test suites and tools to

run these automatically (details are available from the SIR

repository and the article by Do, Elbaum and Rothermel [19]).

Test cases which failed to produce any output were discarded

(7 out of 214 for Nanoxml, and 73 out of 567 for Siena giving

final test case numbers of 207 and 494).
2) Input/Output Pair Transformation: Before feeding the

input/output pairs to the clustering algorithm the data was

transformed from text to an attribute of vectors by a simple

process of tokenisation [18]. Table I shows an example of

this for both NanoXML and Siena. Notice that the parameters

for the Sience commands were all encoded as “1” as they

remained unchanged between input and output.
3) Identify Failures: The NanoXML system comes with

matrices which map test cases to faults and makes the iden-

tification of faults effectively automatic. Siena has no such

fault matrix so the test outputs of the original version were

compared with that of the faulty ones to find the failing tests.
4) Perform Clustering: Agglomerative hierarchical cluster-

ing is used in all of the experiments. This type of clustering

was chosen because it performed reasonably well for some

similar problems [11], [12], [20], [13] and was also suggested

by Witten et al. [18] as the most suitable solution for nominal

and string data (which the coding system produces for these

two systems). The inputs to cluster analysis were the coded

input/output pairs of the subject programs.

After exploring various alternatives Euclidean distance was

settled on as the measure of (dis)similarity between two ob-

jects. The WEKA toolkit2 used in this study computes this by

taking the nominal data attributes and transforming them into

binary variables. The squared differences between the binary

vectors are then summed: a zero sum indicates agreement

(similarity), but a non-zero sum suggests a dissimilarity.

In addition to a similarity metric, clustering requires a

linkage metric which is used to determine when clusters should

be merged or split. There are three approaches: Single Linkage

calculates the minimum distance between an object in one

cluster and an object in another, Average Linkage computes

the mean distance between objects in the two clusters, and

Complete Linkage is based on the maximum distance between

objects. All three were used in this study but for space reasons

only the average linkage results are reported.
5) Number of Clusters: For the clustering approach adopted

the number of clusters needs to be provided as a parameter.

This can clearly have a significant impact – too many clusters

results in fragmentation and too few in over-generalisation.

Therefore, a number of different cluster counts were explored

based on a percentage of the number of subject program test

cases (1%, 5%, 10%, 15%, 20% and 25%).

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Distribution of Failures

The first major question to explore is whether failures

are distributed in a random pattern. Figures 1 and 2 show

2http://www.cs.waikato.ac.nz/ml/weka/downloading.html

Fig. 1: Hierarchical Clustering Algorithm with Average Linkage for
Nanoxml (Version 3)

Fig. 2: Hierarchical Clustering Algorithm with Average
Linkage for Siena (Version 2)

bar charts of NanoXML (faulty version 3) and Siena (faulty

version 2) systems with 50 and 100 clusters respectively. It

can be seen from these that failures in the input/output pairs

population tend to cluster together and these clusters tend

to be the smaller ones (these are selected results but others

reflect a similar pattern). It would seem that a substantial

number of failures belong to small clusters, supporting the

main hypothesis behind this work.

B. Failures Found Verses Cluster Counts and Cluster Sizes

TABLE II: Percentage of Failures vs. Cluster Size

Cluster Cluster NanoXML Cluster Siena

Count
(%)

Size
(%)

V1 V2 V3 V5 Size
(%)

(ave.)

1 50 7.40 2.81 100 10.76 19.8 0

5 10 56.79 63.38 34.28 26.15 4 16.66

10 6.25 56.79 63.38 45.71 61.53 2 41.66

15 3.25 56.79 63.38 82.85 52.30 1.21 41.66

20 2.50 51.85 54.92 75.71 52.30 0.79 67.85

25 2.25 65.43 61.97 75.71 61.53 0.6 75

To explore this finding further we examined the population

of input/output pairs that were in small clusters (defined as

being of average size or less) and corresponded to failures.



Table II shows, for varying numbers and sizes of clusters over

both systems, the percentage of all data points corresponding

to failures. The first column (Cluster Count %) defines the

number of clusters the algorithm is charged with creating

expressed as a percentage of the number of test cases. The

second column (Cluster Size %) is the average size of the

clusters again in terms of the number of tests. The subsequent

columns refer to the version number of the program, following

which is the same information for Siena.

The data shows that when the cluster counts are between

15% to 25% of the number of test cases (corresponding to

cluster sizes of around 3% of the number of test cases), well

over 60% of the data points are failures, lending strong support

to the main hypothesis of this paper. One case where this is

not quite true is version 3 of NanoXML where the largest

clusters contained the most failures: the input-output pairs

corresponding to failures are so distinct from the rest that they

were all grouped into one cluster (an impressive but probably

unusual case!).

The trend is for the failure density of the clusters to increase

in line with the number of clusters (with the exception of the

aforementioned version 3 in NanoXML). However, in some

cases, as the number of clusters increases the failure intensity

peaks and then begins to drop (although not substantially) as

the clusters are forced to fragment. An important lesson from

this is not to create too many clusters in relation to the number

of input-output pairs. This phenomenon is less pronounced in

the Siena data. Note that the faults in Siena changed the same

output data in all versions which explains why there is no

separation of the results into versions.

C. Failure Density of Smallest Clusters

From the perspective of supporting the construction of a

test oracle, the interesting question concerns the return on

investment: how many outputs need to be examined before

a reasonable number of failures are observed? To answer this

we examined in more detail the proportion of failing outputs

appearing in the smallest sized clusters. The absence of a fault

matrix for Siena makes this very time consuming to compute,

therefore only the results for the highest failure density clusters

for NanoXML have been calculated so far. The results of this

are summarised in Table III and show the cluster size (the

3 values correspond to the absolute size of the cluster, the

number of clusters of that size, and the size of the cluster

and proportional to the test set size) and details of the failures

found (the proportion, the actual failures indicated by ‘Fn’, and

the number of occurrences of each failure). So, for instance,

the first entry of Table III shows that for Version 1 using 25%

of the number of test cases to define the number of clusters,

there were 13 clusters each of size 1 corresponding to 0.48%

of the number of test cases, containing failures 1 (3 times), 2

and 6 (once each).

The table shows that on average over all four versions a

fair proportion of the failures - 45% (13/29) - are contained

within the very smallest clusters (formed from just one or

two items). This is encouraging from an oracle perspective:

out of 43 outputs, 23 correspond to failures giving a failure

density of 53%. This initially good rate tails off until the

cluster size reaches 4 and additional failures appear in the

outputs (except for version 5). By this point an average of 66%

(19/29) of the failures have appeared in the clusters, albeit at

the expense of having to examine more non-failing outputs and

encountering duplicate failing outputs (but still giving a failure

density of around 59%). This failure density figure, combined

with the fact that clusters tend to contain outputs associated

with the same failure, means that in practice less than half of

the outputs from a cluster need to be checked before a failing

output is encountered.

TABLE III: Failure Distribution over less than Average Sized Clusters

Version 1 (25%)

Cluster Size Failures

1, 13, 0.48% 3/7 (F1:3,F2:1,F6:1)

2, 13, 0.97% 3/7 (F1:4,F2:2,F6:2)

3, 4, 1.45% 1/7 (F6:3)

4, 8, 1.94% 3/7 (F2:16,F5:8,F7:8)

Version 2 (15%)

Cluster Size Failures

1, 7, 0.48% 3/7 (F1:3,F2:1,F6:1)

2, 3, 0.97% 1/7 (F6:2)

3, 5, 1.45% 1/7 (F6:3)

4, 6, 1.94% 3/7 (F2:8,F5:8,F7:8)

5, 2, 2.42% 1/7 (F2:5)

6, 1, 2.91% (1/7) (F2:6)

Version 3 (15%)

Cluster Size Failures

1, 10, 0.48% 5/7 (F1:4,F2:1,F3:1,F4:2,F6:1)

2, 4, 0.97% 3/7 (F1:1,F4:2,F6:2)

3, 5, 1.45% 2/7 (F4:6,F6:3)

4, 6, 1.94% 3/7 (F2:8,F5:8,F7:8)

5, 2, 2.42% 1/7 (F2:5)

6, 1, 2.91% 1/7 (F2:6)

Version 5 (25%)

Cluster Size Failures

1, 13, 0.48% 2/8 (F1:3,F2:1)

2, 14, 0.97% 2/8 (F1:2,F2:2)

3, 8, 1.45% 1/8 (F2:3)

4, 7, 1.94% 1/8 (F2:28)

Of course, there are still additional failing outputs embedded

in the larger clusters which can’t be ignored. This is clearly

a weakness of the approach and one of the main topics of

future work is to explore how these can be teased out into

smaller clusters. A further feature of the clustering is that there

is often number of independent clusters associated with the

same failure (separated typically because the input/output pairs

have different attribute values). This is also a challenge since

finding the same failure appearing in several clusters can be

quite frustrating for the individual charged with the task of

checking outputs. Merging them together is not the answer as

this will typically result in a larger cluster which may escape

scrutiny, so some way of indicating similarity between them

needs to be explored.

D. Threats to Validity

The main threat to the validity of this study is the limited

number and types of subject programs used in our exper-

iments along with their associated faults and failure rates.



The input/output pairs of all subject programs were string

data (any numeric values were transformed to strings), and all

subject programs were moderate size. The coding scheme also

indicates a potential threat but this was created by examining

a subset of inputs and outputs in ignorance of whether they

are passing or failing pairs, and then applied automatically to

the remainder of the data set. This is relatively early work in

this area and the aim is to mitigate these threats by exploring

a wider range of systems in the near future.

VI. CONCLUSION

This paper presents an initial, and we believe the first,

investigation study into building an automated test oracle by

using hierarchical clustering with input/output pairs alone. The

approach was evaluated on several versions of two modest-

sized Java systems using supplied sets of test data and faults,

along with hierarchical clustering and varying sizes of cluster.

The results suggest that over 60% of the contents of small

(average-sized or less) clusters correspond to failures and

furthermore these smallest clusters are dominated by failing

outputs – which supports the experimental hypothesis behind

this work. This result has potentially important practical conse-

quences: the task of scrutinising test outputs may potentially be

reduced significantly to examining well under half the contents

of the smaller clusters an order of magnitude reduction in

effort.

Although the results are encouraging it is clearly not rea-

sonable to generalise from this small set of experiments and

further empirical evaluation is needed to confirm our results.

The two main challenges are firstly to improve the count

of unique failures in the smaller clusters by exploring how

the input/output pairs may be augmented with additional data

such as trace executions, timing information, code coverage

information and profile executions; and secondly to examine

how similar failures in unique clusters can be flagged with-

out inadvertently grouping them together into larger clusters.

Additional work includes exploring other anomaly detection

and clustering strategies with the aim of reducing further the

number of outputs that need to be considered, and evaluating

the approach against existing strategies from the specification

mining domain

The complete results and data sets used in the study may

be found at: http://personal.strath.ac.uk/rafig.almaghairbe/
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