2 research outputs found

    Where 'Ignoring Delete Lists' Works: Local Search Topology in Planning Benchmarks

    Full text link
    Between 1998 and 2004, the planning community has seen vast progress in terms of the sizes of benchmark examples that domain-independent planners can tackle successfully. The key technique behind this progress is the use of heuristic functions based on relaxing the planning task at hand, where the relaxation is to assume that all delete lists are empty. The unprecedented success of such methods, in many commonly used benchmark examples, calls for an understanding of what classes of domains these methods are well suited for. In the investigation at hand, we derive a formal background to such an understanding. We perform a case study covering a range of 30 commonly used STRIPS and ADL benchmark domains, including all examples used in the first four international planning competitions. We *prove* connections between domain structure and local search topology -- heuristic cost surface properties -- under an idealized version of the heuristic functions used in modern planners. The idealized heuristic function is called h^+, and differs from the practically used functions in that it returns the length of an *optimal* relaxed plan, which is NP-hard to compute. We identify several key characteristics of the topology under h^+, concerning the existence/non-existence of unrecognized dead ends, as well as the existence/non-existence of constant upper bounds on the difficulty of escaping local minima and benches. These distinctions divide the (set of all) planning domains into a taxonomy of classes of varying h^+ topology. As it turns out, many of the 30 investigated domains lie in classes with a relatively easy topology. Most particularly, 12 of the domains lie in classes where FFs search algorithm, provided with h^+, is a polynomial solving mechanism. We also present results relating h^+ to its approximation as implemented in FF. The behavior regarding dead ends is provably the same. We summarize the results of an empirical investigation showing that, in many domains, the topological qualities of h^+ are largely inherited by the approximation. The overall investigation gives a rare example of a successful analysis of the connections between typical-case problem structure, and search performance. The theoretical investigation also gives hints on how the topological phenomena might be automatically recognizable by domain analysis techniques. We outline some preliminary steps we made into that direction

    Automated Planning and Scheduling using Calculus of Variations in Discrete Space

    No full text
    In this paper, we propose new dominance relations that can speed up significantly the solution process of planning problems formulated as nonlinear constrained dynamic optimization in discrete time and space. We first show that path dominance in dynamic programming cannot be applied when there are general constraints that span across multiple stages, and that node dominance, in the form of Euler-Lagrange conditions developed in optimal control theory in continuous space, cannot be extended to that in discrete space. This paper is the first to propose efficient node-dominance relations, in the form of local saddle-point conditions in each stage of a discrete-space planning problem, for pruning states that will not lead to locally optimal paths. By utilizing these dominance relations, we present efficient search algorithms whose complexity, despite exponential, has a much smaller base as compared to that without using the relations. Finally, we demonstrate the performance of our approach by integrating it in the ASPEN planner and show significant improvements in CPU time and solution quality on some spacecraft scheduling and planning benchmarks
    corecore