6 research outputs found

    Efficient Strategy Iteration for Mean Payoff in Markov Decision Processes

    Full text link
    Markov decision processes (MDPs) are standard models for probabilistic systems with non-deterministic behaviours. Mean payoff (or long-run average reward) provides a mathematically elegant formalism to express performance related properties. Strategy iteration is one of the solution techniques applicable in this context. While in many other contexts it is the technique of choice due to advantages over e.g. value iteration, such as precision or possibility of domain-knowledge-aware initialization, it is rarely used for MDPs, since there it scales worse than value iteration. We provide several techniques that speed up strategy iteration by orders of magnitude for many MDPs, eliminating the performance disadvantage while preserving all its advantages

    Assume-Guarantee Abstraction Refinement for Probabilistic Systems

    Full text link
    We describe an automated technique for assume-guarantee style checking of strong simulation between a system and a specification, both expressed as non-deterministic Labeled Probabilistic Transition Systems (LPTSes). We first characterize counterexamples to strong simulation as "stochastic" trees and show that simpler structures are insufficient. Then, we use these trees in an abstraction refinement algorithm that computes the assumptions for assume-guarantee reasoning as conservative LPTS abstractions of some of the system components. The abstractions are automatically refined based on tree counterexamples obtained from failed simulation checks with the remaining components. We have implemented the algorithms for counterexample generation and assume-guarantee abstraction refinement and report encouraging results.Comment: 23 pages, conference paper with full proof

    Learning Probabilistic Systems from Tree Samples

    Full text link
    We consider the problem of learning a non-deterministic probabilistic system consistent with a given finite set of positive and negative tree samples. Consistency is defined with respect to strong simulation conformance. We propose learning algorithms that use traditional and a new "stochastic" state-space partitioning, the latter resulting in the minimum number of states. We then use them to solve the problem of "active learning", that uses a knowledgeable teacher to generate samples as counterexamples to simulation equivalence queries. We show that the problem is undecidable in general, but that it becomes decidable under a suitable condition on the teacher which comes naturally from the way samples are generated from failed simulation checks. The latter problem is shown to be undecidable if we impose an additional condition on the learner to always conjecture a "minimum state" hypothesis. We therefore propose a semi-algorithm using stochastic partitions. Finally, we apply the proposed (semi-) algorithms to infer intermediate assumptions in an automated assume-guarantee verification framework for probabilistic systems.Comment: 14 pages, conference paper with full proof

    Value Iteration for Simple Stochastic Games: Stopping Criterion and Learning Algorithm

    Full text link
    Simple stochastic games can be solved by value iteration (VI), which yields a sequence of under-approximations of the value of the game. This sequence is guaranteed to converge to the value only in the limit. Since no stopping criterion is known, this technique does not provide any guarantees on its results. We provide the first stopping criterion for VI on simple stochastic games. It is achieved by additionally computing a convergent sequence of over-approximations of the value, relying on an analysis of the game graph. Consequently, VI becomes an anytime algorithm returning the approximation of the value and the current error bound. As another consequence, we can provide a simulation-based asynchronous VI algorithm, which yields the same guarantees, but without necessarily exploring the whole game graph.Comment: CAV201

    Project Final Report Use and Dissemination of Foreground

    Get PDF
    This document is the final report on use and dissemination of foreground, part of the CONNECT final report. The document provides the lists of: publications, dissemination activities, and exploitable foregroun

    Automated Learning of Probabilistic Assumptions for Compositional Reasoning

    No full text
    Abstract. Probabilistic verification techniques have been applied to the formal modelling and analysis of a wide range of systems, from communication protocols such as Bluetooth, to nanoscale computing devices, to biological cellular processes. In order to tackle the inherent challenge of scalability, compositional approaches to verification are sorely needed. An example is assume-guarantee reasoning, where each component of a system is analysed independently, using assumptions about the other components that it interacts with. We discuss recent developments in the area of automated compositional verification techniques for probabilistic systems. In particular, we describe techniques to automatically generate probabilistic assumptions that can be used as the basis for compositional reasoning. We do so using algorithmic learning techniques, which have already proved to be successful for the generation of assumptions for compositional verification of non-probabilistic systems. We also present recent improvements and extensions to this work and survey some of the promising potential directions for further research in this area.
    corecore