29,420 research outputs found

    Metadata Augmentation for Semantic- and Context- Based Retrieval of Digital Cultural Objects

    Get PDF
    Cultural objects are increasingly stored and generated in digital form, yet effective methods for their indexing and retrieval still remain an open area of research. The main problem arises from the disconnection between the content-based indexing approach used by computer scientists and the description-based approach used by information scientists. There is also a lack of representational schemes that allow the alignment of the semantics and context with keywords and low-level features that can be automatically extracted from the content of these cultural objects. This paper presents an integrated approach to address these problems, taking advantage of both computer science and information science approaches. The focus is on the rationale and conceptual design of the system and its various components. In particular, we discuss techniques for augmenting commonly used metadata with visual features and domain knowledge to generate high-level abstract metadata which in turn can be used for semantic and context-based indexing and retrieval. We use a sample collection of Vietnamese traditional woodcuts to demonstrate the usefulness of this approach

    Virtual Astronomy, Information Technology, and the New Scientific Methodology

    Get PDF
    All sciences, including astronomy, are now entering the era of information abundance. The exponentially increasing volume and complexity of modern data sets promises to transform the scientific practice, but also poses a number of common technological challenges. The Virtual Observatory concept is the astronomical community's response to these challenges: it aims to harness the progress in information technology in the service of astronomy, and at the same time provide a valuable testbed for information technology and applied computer science. Challenges broadly fall into two categories: data handling (or "data farming"), including issues such as archives, intelligent storage, databases, interoperability, fast networks, etc., and data mining, data understanding, and knowledge discovery, which include issues such as automated clustering and classification, multivariate correlation searches, pattern recognition, visualization in highly hyperdimensional parameter spaces, etc., as well as various applications of machine learning in these contexts. Such techniques are forming a methodological foundation for science with massive and complex data sets in general, and are likely to have a much broather impact on the modern society, commerce, information economy, security, etc. There is a powerful emerging synergy between the computationally enabled science and the science-driven computing, which will drive the progress in science, scholarship, and many other venues in the 21st century

    Individual Tariffs for Mobile Services: Theoretical Framework and a Computational Case in Mobile Music

    Get PDF
    This paper introduces individual tariffs at service and content bundle level in mobile communications. It gives a theoretical framework (economic, sociological) as well as a computational game solution method. The user can be an individual or a community. Individual tariffs are decided through interactions between the user and the supplier. A numerical example from mobile music illustrates the concepts.risks;mobile communication services;Individual tariffs;computational games

    Malware in the Future? Forecasting of Analyst Detection of Cyber Events

    Full text link
    There have been extensive efforts in government, academia, and industry to anticipate, forecast, and mitigate cyber attacks. A common approach is time-series forecasting of cyber attacks based on data from network telescopes, honeypots, and automated intrusion detection/prevention systems. This research has uncovered key insights such as systematicity in cyber attacks. Here, we propose an alternate perspective of this problem by performing forecasting of attacks that are analyst-detected and -verified occurrences of malware. We call these instances of malware cyber event data. Specifically, our dataset was analyst-detected incidents from a large operational Computer Security Service Provider (CSSP) for the U.S. Department of Defense, which rarely relies only on automated systems. Our data set consists of weekly counts of cyber events over approximately seven years. Since all cyber events were validated by analysts, our dataset is unlikely to have false positives which are often endemic in other sources of data. Further, the higher-quality data could be used for a number for resource allocation, estimation of security resources, and the development of effective risk-management strategies. We used a Bayesian State Space Model for forecasting and found that events one week ahead could be predicted. To quantify bursts, we used a Markov model. Our findings of systematicity in analyst-detected cyber attacks are consistent with previous work using other sources. The advanced information provided by a forecast may help with threat awareness by providing a probable value and range for future cyber events one week ahead. Other potential applications for cyber event forecasting include proactive allocation of resources and capabilities for cyber defense (e.g., analyst staffing and sensor configuration) in CSSPs. Enhanced threat awareness may improve cybersecurity.Comment: Revised version resubmitted to journa

    Automating Security Risk and Requirements Management for Cyber-Physical Systems

    Get PDF
    Cyber-physische Systeme ermöglichen zahlreiche moderne AnwendungsfĂ€lle und GeschĂ€ftsmodelle wie vernetzte Fahrzeuge, das intelligente Stromnetz (Smart Grid) oder das industrielle Internet der Dinge. Ihre SchlĂŒsselmerkmale KomplexitĂ€t, HeterogenitĂ€t und Langlebigkeit machen den langfristigen Schutz dieser Systeme zu einer anspruchsvollen, aber unverzichtbaren Aufgabe. In der physischen Welt stellen die Gesetze der Physik einen festen Rahmen fĂŒr Risiken und deren Behandlung dar. Im Cyberspace gibt es dagegen keine vergleichbare Konstante, die der Erosion von Sicherheitsmerkmalen entgegenwirkt. Hierdurch können sich bestehende Sicherheitsrisiken laufend Ă€ndern und neue entstehen. Um SchĂ€den durch böswillige Handlungen zu verhindern, ist es notwendig, hohe und unbekannte Risiken frĂŒhzeitig zu erkennen und ihnen angemessen zu begegnen. Die BerĂŒcksichtigung der zahlreichen dynamischen sicherheitsrelevanten Faktoren erfordert einen neuen Automatisierungsgrad im Management von Sicherheitsrisiken und -anforderungen, der ĂŒber den aktuellen Stand der Wissenschaft und Technik hinausgeht. Nur so kann langfristig ein angemessenes, umfassendes und konsistentes Sicherheitsniveau erreicht werden. Diese Arbeit adressiert den dringenden Bedarf an einer Automatisierungsmethodik bei der Analyse von Sicherheitsrisiken sowie der Erzeugung und dem Management von Sicherheitsanforderungen fĂŒr Cyber-physische Systeme. Das dazu vorgestellte Rahmenwerk umfasst drei Komponenten: (1) eine modelbasierte Methodik zur Ermittlung und Bewertung von Sicherheitsrisiken; (2) Methoden zur Vereinheitlichung, Ableitung und Verwaltung von Sicherheitsanforderungen sowie (3) eine Reihe von Werkzeugen und Verfahren zur Erkennung und Reaktion auf sicherheitsrelevante Situationen. Der Schutzbedarf und die angemessene Stringenz werden durch die Sicherheitsrisikobewertung mit Hilfe von Graphen und einer sicherheitsspezifischen Modellierung ermittelt und bewertet. Basierend auf dem Modell und den bewerteten Risiken werden anschließend fundierte Sicherheitsanforderungen zum Schutz des Gesamtsystems und seiner FunktionalitĂ€t systematisch abgeleitet und in einer einheitlichen, maschinenlesbaren Struktur formuliert. Diese maschinenlesbare Struktur ermöglicht es, Sicherheitsanforderungen automatisiert entlang der Lieferkette zu propagieren. Ebenso ermöglicht sie den effizienten Abgleich der vorhandenen FĂ€higkeiten mit externen Sicherheitsanforderungen aus Vorschriften, Prozessen und von GeschĂ€ftspartnern. Trotz aller getroffenen Maßnahmen verbleibt immer ein gewisses Restrisiko einer Kompromittierung, worauf angemessen reagiert werden muss. Dieses Restrisiko wird durch Werkzeuge und Prozesse adressiert, die sowohl die lokale und als auch die großrĂ€umige Erkennung, Klassifizierung und Korrelation von VorfĂ€llen verbessern. Die Integration der Erkenntnisse aus solchen VorfĂ€llen in das Modell fĂŒhrt hĂ€ufig zu aktualisierten Bewertungen, neuen Anforderungen und verbessert weitere Analysen. Abschließend wird das vorgestellte Rahmenwerk anhand eines aktuellen Anwendungsfalls aus dem Automobilbereich demonstriert.Cyber-Physical Systems enable various modern use cases and business models such as connected vehicles, the Smart (power) Grid, or the Industrial Internet of Things. Their key characteristics, complexity, heterogeneity, and longevity make the long-term protection of these systems a demanding but indispensable task. In the physical world, the laws of physics provide a constant scope for risks and their treatment. In cyberspace, on the other hand, there is no such constant to counteract the erosion of security features. As a result, existing security risks can constantly change and new ones can arise. To prevent damage caused by malicious acts, it is necessary to identify high and unknown risks early and counter them appropriately. Considering the numerous dynamic security-relevant factors requires a new level of automation in the management of security risks and requirements, which goes beyond the current state of the art. Only in this way can an appropriate, comprehensive, and consistent level of security be achieved in the long term. This work addresses the pressing lack of an automation methodology for the security-risk assessment as well as the generation and management of security requirements for Cyber-Physical Systems. The presented framework accordingly comprises three components: (1) a model-based security risk assessment methodology, (2) methods to unify, deduce and manage security requirements, and (3) a set of tools and procedures to detect and respond to security-relevant situations. The need for protection and the appropriate rigor are determined and evaluated by the security risk assessment using graphs and a security-specific modeling. Based on the model and the assessed risks, well-founded security requirements for protecting the overall system and its functionality are systematically derived and formulated in a uniform, machine-readable structure. This machine-readable structure makes it possible to propagate security requirements automatically along the supply chain. Furthermore, they enable the efficient reconciliation of present capabilities with external security requirements from regulations, processes, and business partners. Despite all measures taken, there is always a slight risk of compromise, which requires an appropriate response. This residual risk is addressed by tools and processes that improve the local and large-scale detection, classification, and correlation of incidents. Integrating the findings from such incidents into the model often leads to updated assessments, new requirements, and improves further analyses. Finally, the presented framework is demonstrated by a recent application example from the automotive domain

    Individual Tariffs for Mobile Communication Services

    Get PDF
    This paper introduces a conceptual framework and a computational model for individual tariffs for mobile communication services. The purpose is to provide guidance for implementation by communication service suppliers or user groups alike. The paper first examines the sociological and economic incentives for personalized services and individual tariffs. Then it introduces a framework for individual tariffs which is centered on user and supplier behaviours. The user, instead of being fully rational, has "bounded rationality" and his behaviours are subject to economic constraints and influenced by social needs. The supplier can belong to different types of entities such as firms and communities; each has his own goals which lead to different behaviors. Individual tariffs are decided through interactions between the user and the supplier and can be analyzed in a structured way using game theory. A numerical case in mobile music training is developed to illustrate the concepts.risks;mobile communication services;Individual tariffs;computational games

    Methodological challenges and analytic opportunities for modeling and interpreting Big Healthcare Data

    Full text link
    Abstract Managing, processing and understanding big healthcare data is challenging, costly and demanding. Without a robust fundamental theory for representation, analysis and inference, a roadmap for uniform handling and analyzing of such complex data remains elusive. In this article, we outline various big data challenges, opportunities, modeling methods and software techniques for blending complex healthcare data, advanced analytic tools, and distributed scientific computing. Using imaging, genetic and healthcare data we provide examples of processing heterogeneous datasets using distributed cloud services, automated and semi-automated classification techniques, and open-science protocols. Despite substantial advances, new innovative technologies need to be developed that enhance, scale and optimize the management and processing of large, complex and heterogeneous data. Stakeholder investments in data acquisition, research and development, computational infrastructure and education will be critical to realize the huge potential of big data, to reap the expected information benefits and to build lasting knowledge assets. Multi-faceted proprietary, open-source, and community developments will be essential to enable broad, reliable, sustainable and efficient data-driven discovery and analytics. Big data will affect every sector of the economy and their hallmark will be ‘team science’.http://deepblue.lib.umich.edu/bitstream/2027.42/134522/1/13742_2016_Article_117.pd
    • 

    corecore