9 research outputs found

    Automated Instruction Stream Throughput Prediction for Intel and AMD Microarchitectures

    Full text link
    An accurate prediction of scheduling and execution of instruction streams is a necessary prerequisite for predicting the in-core performance behavior of throughput-bound loop kernels on out-of-order processor architectures. Such predictions are an indispensable component of analytical performance models, such as the Roofline and the Execution-Cache-Memory (ECM) model, and allow a deep understanding of the performance-relevant interactions between hardware architecture and loop code. We present the Open Source Architecture Code Analyzer (OSACA), a static analysis tool for predicting the execution time of sequential loops comprising x86 instructions under the assumption of an infinite first-level cache and perfect out-of-order scheduling. We show the process of building a machine model from available documentation and semi-automatic benchmarking, and carry it out for the latest Intel Skylake and AMD Zen micro-architectures. To validate the constructed models, we apply them to several assembly kernels and compare runtime predictions with actual measurements. Finally we give an outlook on how the method may be generalized to new architectures.Comment: 11 pages, 4 figures, 7 table

    Automatic Throughput and Critical Path Analysis of x86 and ARM Assembly Kernels

    Full text link
    Useful models of loop kernel runtimes on out-of-order architectures require an analysis of the in-core performance behavior of instructions and their dependencies. While an instruction throughput prediction sets a lower bound to the kernel runtime, the critical path defines an upper bound. Such predictions are an essential part of analytic (i.e., white-box) performance models like the Roofline and Execution-Cache-Memory (ECM) models. They enable a better understanding of the performance-relevant interactions between hardware architecture and loop code. The Open Source Architecture Code Analyzer (OSACA) is a static analysis tool for predicting the execution time of sequential loops. It previously supported only x86 (Intel and AMD) architectures and simple, optimistic full-throughput execution. We have heavily extended OSACA to support ARM instructions and critical path prediction including the detection of loop-carried dependencies, which turns it into a versatile cross-architecture modeling tool. We show runtime predictions for code on Intel Cascade Lake, AMD Zen, and Marvell ThunderX2 micro-architectures based on machine models from available documentation and semi-automatic benchmarking. The predictions are compared with actual measurements.Comment: 6 pages, 3 figure

    Ithemal: Accurate, Portable and Fast Basic Block Throughput Estimation using Deep Neural Networks

    Full text link
    Predicting the number of clock cycles a processor takes to execute a block of assembly instructions in steady state (the throughput) is important for both compiler designers and performance engineers. Building an analytical model to do so is especially complicated in modern x86-64 Complex Instruction Set Computer (CISC) machines with sophisticated processor microarchitectures in that it is tedious, error prone, and must be performed from scratch for each processor generation. In this paper we present Ithemal, the first tool which learns to predict the throughput of a set of instructions. Ithemal uses a hierarchical LSTM--based approach to predict throughput based on the opcodes and operands of instructions in a basic block. We show that Ithemal is more accurate than state-of-the-art hand-written tools currently used in compiler backends and static machine code analyzers. In particular, our model has less than half the error of state-of-the-art analytical models (LLVM's llvm-mca and Intel's IACA). Ithemal is also able to predict these throughput values just as fast as the aforementioned tools, and is easily ported across a variety of processor microarchitectures with minimal developer effort.Comment: Published at 36th International Conference on Machine Learning (ICML) 201

    Analytic Performance Modeling and Analysis of Detailed Neuron Simulations

    Full text link
    Big science initiatives are trying to reconstruct and model the brain by attempting to simulate brain tissue at larger scales and with increasingly more biological detail than previously thought possible. The exponential growth of parallel computer performance has been supporting these developments, and at the same time maintainers of neuroscientific simulation code have strived to optimally and efficiently exploit new hardware features. Current state of the art software for the simulation of biological networks has so far been developed using performance engineering practices, but a thorough analysis and modeling of the computational and performance characteristics, especially in the case of morphologically detailed neuron simulations, is lacking. Other computational sciences have successfully used analytic performance engineering and modeling methods to gain insight on the computational properties of simulation kernels, aid developers in performance optimizations and eventually drive co-design efforts, but to our knowledge a model-based performance analysis of neuron simulations has not yet been conducted. We present a detailed study of the shared-memory performance of morphologically detailed neuron simulations based on the Execution-Cache-Memory (ECM) performance model. We demonstrate that this model can deliver accurate predictions of the runtime of almost all the kernels that constitute the neuron models under investigation. The gained insight is used to identify the main governing mechanisms underlying performance bottlenecks in the simulation. The implications of this analysis on the optimization of neural simulation software and eventually co-design of future hardware architectures are discussed. In this sense, our work represents a valuable conceptual and quantitative contribution to understanding the performance properties of biological networks simulations.Comment: 18 pages, 6 figures, 15 table

    From micro-OPs to abstract resources: constructing a simpler CPU performance model through microbenchmarking

    Get PDF
    This paper describes PALMED, a tool that automatically builds a resource mapping, a performance model for pipelined, super-scalar, out-of-order CPU architectures. Resource mappings describe the execution of a program by assigning instructions in the program to abstract resources. They can be used to predict the throughput of basic blocks or as a machine model for the backend of an optimizing compiler. PALMED does not require hardware performance counters, and relies solely on runtime measurements to construct resource mappings. This allows it to model not only execution port usage, but also other limiting resources, such as the frontend or the reorder buffer. Also, thanks to a dual representation of resource mappings, our algorithm for constructing mappings scales to large instruction sets, like that of x86. We evaluate the algorithmic contribution of the paper in two ways. First by showing that our approach can reverse engineering an accurate resource mapping from an idealistic performance model produced by an existing port-mapping. We also evaluate the pertinence of our dual representation, as opposed to the standard port-mapping, for throughput modeling by extracting a representative set of basic-blocks from the compiled binaries of the Spec CPU 2017 benchmarks and comparing the throughput predicted by existing machine models to that produced by PALMED

    SMoTherSpectre: exploiting speculative execution through port contention

    Full text link
    Spectre, Meltdown, and related attacks have demonstrated that kernels, hypervisors, trusted execution environments, and browsers are prone to information disclosure through micro-architectural weaknesses. However, it remains unclear as to what extent other applications, in particular those that do not load attacker-provided code, may be impacted. It also remains unclear as to what extent these attacks are reliant on cache-based side channels. We introduce SMoTherSpectre, a speculative code-reuse attack that leverages port-contention in simultaneously multi-threaded processors (SMoTher) as a side channel to leak information from a victim process. SMoTher is a fine-grained side channel that detects contention based on a single victim instruction. To discover real-world gadgets, we describe a methodology and build a tool that locates SMoTher-gadgets in popular libraries. In an evaluation on glibc, we found hundreds of gadgets that can be used to leak information. Finally, we demonstrate proof-of-concept attacks against the OpenSSH server, creating oracles for determining four host key bits, and against an application performing encryption using the OpenSSL library, creating an oracle which can differentiate a bit of the plaintext through gadgets in libcrypto and glibc
    corecore