169,943 research outputs found
Automated Game Design Learning
While general game playing is an active field of research, the learning of
game design has tended to be either a secondary goal of such research or it has
been solely the domain of humans. We propose a field of research, Automated
Game Design Learning (AGDL), with the direct purpose of learning game designs
directly through interaction with games in the mode that most people experience
games: via play. We detail existing work that touches the edges of this field,
describe current successful projects in AGDL and the theoretical foundations
that enable them, point to promising applications enabled by AGDL, and discuss
next steps for this exciting area of study. The key moves of AGDL are to use
game programs as the ultimate source of truth about their own design, and to
make these design properties available to other systems and avenues of inquiry.Comment: 8 pages, 2 figures. Accepted for CIG 201
A Grey-Box Approach to Automated Mechanism Design
Auctions play an important role in electronic commerce, and have been used to
solve problems in distributed computing. Automated approaches to designing
effective auction mechanisms are helpful in reducing the burden of traditional
game theoretic, analytic approaches and in searching through the large space of
possible auction mechanisms. This paper presents an approach to automated
mechanism design (AMD) in the domain of double auctions. We describe a novel
parametrized space of double auctions, and then introduce an evolutionary
search method that searches this space of parameters. The approach evaluates
auction mechanisms using the framework of the TAC Market Design Game and
relates the performance of the markets in that game to their constituent parts
using reinforcement learning. Experiments show that the strongest mechanisms we
found using this approach not only win the Market Design Game against known,
strong opponents, but also exhibit desirable economic properties when they run
in isolation.Comment: 18 pages, 2 figures, 2 tables, and 1 algorithm. Extended abstract to
appear in the proceedings of AAMAS'201
Human-Agent Decision-making: Combining Theory and Practice
Extensive work has been conducted both in game theory and logic to model
strategic interaction. An important question is whether we can use these
theories to design agents for interacting with people? On the one hand, they
provide a formal design specification for agent strategies. On the other hand,
people do not necessarily adhere to playing in accordance with these
strategies, and their behavior is affected by a multitude of social and
psychological factors. In this paper we will consider the question of whether
strategies implied by theories of strategic behavior can be used by automated
agents that interact proficiently with people. We will focus on automated
agents that we built that need to interact with people in two negotiation
settings: bargaining and deliberation. For bargaining we will study game-theory
based equilibrium agents and for argumentation we will discuss logic-based
argumentation theory. We will also consider security games and persuasion games
and will discuss the benefits of using equilibrium based agents.Comment: In Proceedings TARK 2015, arXiv:1606.0729
Gamification : a look into the games elements that drive towards a meaningfull teaching and learning
The term gamification was first brought up a game designer Nick Pelling back in 2004, (Rughini?, 2013) whom tried to use game-like enhanced interface to make electronic transactions such as using the Automated Teller Machine (A.T.M); making it more attractive and engaging thus creating a game like fun to the transaction. From this came the definition of gamification; which is the "use of game design elements in non-game contexts" (Deterding et al., 2011)
Algorithms for detecting dependencies and rigid subsystems for CAD
Geometric constraint systems underly popular Computer Aided Design soft-
ware. Automated approaches for detecting dependencies in a design are critical
for developing robust solvers and providing informative user feedback, and we
provide algorithms for two types of dependencies. First, we give a pebble game
algorithm for detecting generic dependencies. Then, we focus on identifying the
"special positions" of a design in which generically independent constraints
become dependent. We present combinatorial algorithms for identifying subgraphs
associated to factors of a particular polynomial, whose vanishing indicates a
special position and resulting dependency. Further factoring in the Grassmann-
Cayley algebra may allow a geometric interpretation giving conditions (e.g.,
"these two lines being parallel cause a dependency") determining the special
position.Comment: 37 pages, 14 figures (v2 is an expanded version of an AGD'14 abstract
based on v1
Behavior Trees in Robotics and AI: An Introduction
A Behavior Tree (BT) is a way to structure the switching between different
tasks in an autonomous agent, such as a robot or a virtual entity in a computer
game. BTs are a very efficient way of creating complex systems that are both
modular and reactive. These properties are crucial in many applications, which
has led to the spread of BT from computer game programming to many branches of
AI and Robotics. In this book, we will first give an introduction to BTs, then
we describe how BTs relate to, and in many cases generalize, earlier switching
structures. These ideas are then used as a foundation for a set of efficient
and easy to use design principles. Properties such as safety, robustness, and
efficiency are important for an autonomous system, and we describe a set of
tools for formally analyzing these using a state space description of BTs. With
the new analysis tools, we can formalize the descriptions of how BTs generalize
earlier approaches. We also show the use of BTs in automated planning and
machine learning. Finally, we describe an extended set of tools to capture the
behavior of Stochastic BTs, where the outcomes of actions are described by
probabilities. These tools enable the computation of both success probabilities
and time to completion
- …
