784 research outputs found

    Reasoning about Knowledge in Linear Logic: Modalities and Complexity

    No full text
    In a recent paper, Jean-Yves Girard commented that ”it has been a long time since philosophy has stopped intereacting with logic”[17]. Actually, it has no

    Bipolar Proof Nets for MALL

    Full text link
    In this work we present a computation paradigm based on a concurrent and incremental construction of proof nets (de-sequentialized or graphical proofs) of the pure multiplicative and additive fragment of Linear Logic, a resources conscious refinement of Classical Logic. Moreover, we set a correspon- dence between this paradigm and those more pragmatic ones inspired to transactional or distributed systems. In particular we show that the construction of additive proof nets can be interpreted as a model for super-ACID (or co-operative) transactions over distributed transactional systems (typi- cally, multi-databases).Comment: Proceedings of the "Proof, Computation, Complexity" International Workshop, 17-18 August 2012, University of Copenhagen, Denmar

    The ILLTP Library for Intuitionistic Linear Logic

    Get PDF
    Benchmarking automated theorem proving (ATP) systems using standardized problem sets is a well-established method for measuring their performance. However, the availability of such libraries for non-classical logics is very limited. In this work we propose a library for benchmarking Girard's (propositional) intuitionistic linear logic. For a quick bootstrapping of the collection of problems, and for discussing the selection of relevant problems and understanding their meaning as linear logic theorems, we use translations of the collection of Kleene's intuitionistic theorems in the traditional monograph "Introduction to Metamathematics". We analyze four different translations of intuitionistic logic into linear logic and compare their proofs using a linear logic based prover with focusing. In order to enhance the set of problems in our library, we apply the three provability-preserving translations to the propositional benchmarks in the ILTP Library. Finally, we generate a comprehensive set of reachability problems for Petri nets and encode such problems as linear logic sequents, thus enlarging our collection of problems

    Collection analysis for Horn clause programs

    Get PDF
    We consider approximating data structures with collections of the items that they contain. For examples, lists, binary trees, tuples, etc, can be approximated by sets or multisets of the items within them. Such approximations can be used to provide partial correctness properties of logic programs. For example, one might wish to specify than whenever the atom sort(t,s)sort(t,s) is proved then the two lists tt and ss contain the same multiset of items (that is, ss is a permutation of tt). If sorting removes duplicates, then one would like to infer that the sets of items underlying tt and ss are the same. Such results could be useful to have if they can be determined statically and automatically. We present a scheme by which such collection analysis can be structured and automated. Central to this scheme is the use of linear logic as a omputational logic underlying the logic of Horn clauses

    Combining decision procedures for the reals

    Full text link
    We address the general problem of determining the validity of boolean combinations of equalities and inequalities between real-valued expressions. In particular, we consider methods of establishing such assertions using only restricted forms of distributivity. At the same time, we explore ways in which "local" decision or heuristic procedures for fragments of the theory of the reals can be amalgamated into global ones. Let Tadd[Q] be the first-order theory of the real numbers in the language of ordered groups, with negation, a constant 1, and function symbols for multiplication by rational constants. Let Tmult[Q] be the analogous theory for the multiplicative structure, and let T[Q] be the union of the two. We show that although T[Q] is undecidable, the universal fragment of T[Q] is decidable. We also show that terms of T[Q]can fruitfully be put in a normal form. We prove analogous results for theories in which Q is replaced, more generally, by suitable subfields F of the reals. Finally, we consider practical methods of establishing quantifier-free validities that approximate our (impractical) decidability results.Comment: Will appear in Logical Methods in Computer Scienc

    A framework for proof certificates in finite state exploration

    Get PDF
    Model checkers use automated state exploration in order to prove various properties such as reachability, non-reachability, and bisimulation over state transition systems. While model checkers have proved valuable for locating errors in computer models and specifications, they can also be used to prove properties that might be consumed by other computational logic systems, such as theorem provers. In such a situation, a prover must be able to trust that the model checker is correct. Instead of attempting to prove the correctness of a model checker, we ask that it outputs its "proof evidence" as a formally defined document--a proof certificate--and that this document is checked by a trusted proof checker. We describe a framework for defining and checking proof certificates for a range of model checking problems. The core of this framework is a (focused) proof system that is augmented with premises that involve "clerk and expert" predicates. This framework is designed so that soundness can be guaranteed independently of any concerns for the correctness of the clerk and expert specifications. To illustrate the flexibility of this framework, we define and formally check proof certificates for reachability and non-reachability in graphs, as well as bisimulation and non-bisimulation for labeled transition systems. Finally, we describe briefly a reference checker that we have implemented for this framework.Comment: In Proceedings PxTP 2015, arXiv:1507.0837

    Linear logic for constructive mathematics

    Full text link
    We show that numerous distinctive concepts of constructive mathematics arise automatically from an interpretation of "linear higher-order logic" into intuitionistic higher-order logic via a Chu construction. This includes apartness relations, complemented subsets, anti-subgroups and anti-ideals, strict and non-strict order pairs, cut-valued metrics, and apartness spaces. We also explain the constructive bifurcation of classical concepts using the choice between multiplicative and additive linear connectives. Linear logic thus systematically "constructivizes" classical definitions and deals automatically with the resulting bookkeeping, and could potentially be used directly as a basis for constructive mathematics in place of intuitionistic logic.Comment: 39 page
    • …
    corecore