3 research outputs found

    Strategic Issues, Problems and Challenges in Inductive Theorem Proving

    Get PDF
    Abstract(Automated) Inductive Theorem Proving (ITP) is a challenging field in automated reasoning and theorem proving. Typically, (Automated) Theorem Proving (TP) refers to methods, techniques and tools for automatically proving general (most often first-order) theorems. Nowadays, the field of TP has reached a certain degree of maturity and powerful TP systems are widely available and used. The situation with ITP is strikingly different, in the sense that proving inductive theorems in an essentially automatic way still is a very challenging task, even for the most advanced existing ITP systems. Both in general TP and in ITP, strategies for guiding the proof search process are of fundamental importance, in automated as well as in interactive or mixed settings. In the paper we will analyze and discuss the most important strategic and proof search issues in ITP, compare ITP with TP, and argue why ITP is in a sense much more challenging. More generally, we will systematically isolate, investigate and classify the main problems and challenges in ITP w.r.t. automation, on different levels and from different points of views. Finally, based on this analysis we will present some theses about the state of the art in the field, possible criteria for what could be considered as substantial progress, and promising lines of research for the future, towards (more) automated ITP

    Saturation-based decision procedures for fixed domain and minimal model validity

    Get PDF
    Superposition is an established decision procedure for a variety of first-order logic theories represented by sets of clauses. A satisfiable theory, saturated by superposition, implicitly defines a minimal Herbrand model for the theory. This raises the question in how far superposition calculi can be employed for reasoning about such minimal models. This is indeed often possible when existential properties are considered. However, proving universal properties directly leads to a modification of the minimal model's termgenerated domain, as new Skolem functions are introduced. For many applications, this is not desired because it changes the problem. In this thesis, I propose the first superposition calculus that can explicitly represent existentially quantified variables and can thus compute with respect to a given fixed domain. It does not eliminate existential variables by Skolemization, but handles them using additional constraints with which each clause is annotated. This calculus is sound and refutationally complete in the limit for a fixed domain semantics. For saturated Horn theories and classes of positive formulas, the calculus is even complete for proving properties of the minimal model itself, going beyond the scope of known superpositionbased approaches. The calculus is applicable to every set of clauses with equality and does not rely on any syntactic restrictions of the input. Extensions of the calculus lead to various new decision procedures for minimal model validity. A main feature of these decision procedures is that even the validity of queries containing one quantifier alternation can be decided. In particular, I prove that the validity of any formula with at most one quantifier alternation is decidable in models represented by a finite set of atoms and that the validity of several classes of such formulas is decidable in models represented by so-called disjunctions of implicit generalizations. Moreover, I show that the decision of minimal model validity can be reduced to the superposition-based decision of first-order validity for models of a class of predicative Horn clauses where all function symbols are at most unary.Superposition ist eine bewährte Entscheidungsprozedur für eine Vielzahl von Theorien in Prädikatenlogik erster Stufe, die durch Klauseln repräsentiert sind. Eine erfüllbare und bezüglich Superposition saturierte Theorie definiert ein minimales Herbrand-Modell dieser Theorie. Dies wirft die Frage auf, inwiefern Superpositionskalküle zur Argumentation in solchen minimalen Modellen verwendet werden können. Das ist bei der Betrachtung existenziell quantifizierter Eigenschaften tatsächlich oft möglich. Die Analyseuniversell quantifizierter Eigenschaften führt jedoch unmittelbar zu einer Modifizierung der termgenerierten Domäne des minimalen Modells, da neue Skolemfunktionen eingeführt werden. Für viele Anwendungen ist dies unerwünscht, da es die Problemstellung verändert. In dieser Arbeit stelle ich den ersten Superpositionskalkül vor, der existenziell quantifizierte Variablen explizit darstellen und daher Berechnungen über einer gegebenen festen Domäne anstellen kann. In ihm werden existenziell quantifizierte Variablen nicht durch Skolemisierung eliminiert sondern mithilfe zusätzlicher Constraints gehandhabt, mit denen jede Klausel versehen wird. Dieser Kalkül ist korrekt und im Grenzwert widerspruchsvollständig für eine domänenspezifische Semantik. Für saturierte Horntheorien und Klassen positiver Formeln ist der Kalkül sogar korrekt für den Beweis von Eigenschaften des minimalen Modells selbst. Dies übersteigt die Möglichkeiten bisheriger superpositionsbasierter Ansätze. Der Kalkül ist auf beliebige Klauselmengen mit Gleichheit anwendbar und erlegt der Eingabe keine syntaktischen Beschränkungen auf. Erweiterungen des Kalküls führen zu verschiedenen neuen Entscheidungsverfahren für die Gültigkeit in minimalen Modellen. Ein Hauptmerkmal dieser Verfahren ist es, dass selbst die Gültigkeit von Anfragen entscheidbar ist, die einen Quantorenwechsel enthalten. Insbesondere beweise ich, dass die Gültigkeit jeder Formel mit höchstens einem Quantorenwechsel in durch endlich viele Atome repräsentierten Modellen entscheidbar ist, und gleiches gilt für die Gültigkeit mehrerer Klassen solcher Formeln in durch so genannte Disjunktionen impliziter Verallgemeinerungen repräsentieren Modellen. Außerdem zeige ich, dass für eine Klasse prädikativer Hornklauseln, bei denen alle vorkommenden Funktionssymbole maximal einstellig sind, die Entscheidbarkeit der Gültigkeit in minimalen Modellen auf superpositionsbasierte Entscheidbarkeit in Prädikatenlogik erster Stufe reduziert werden kann

    Automata-Driven Automated Induction

    No full text
    . This work investigates inductive theorem proving techniques for first-order functions whose meaning and domains can be specified by Horn Clauses built up from the equality and finitely many unary membership predicates. In contrast with other works in the area, constructors are not assumed to be free. Techniques originating from tree automata are used to describe ground constructor terms in normal form, on which the induction proofs are built up. Validity of (free) constructor clauses is checked by an original technique relying on the recent discovery of a complete axiomatisation of finite trees and their rational subsets. Validity of clauses with defined symbols or non-free constructor terms is reduced to the latter case by appropriate inference rules using a notion of ground reducibility for these symbols. We show how to check this property by generating proof obligations which can be passed over to the inductive prover. 1 Introduction The need for large formal proofs has lead to t..
    corecore