7 research outputs found

    On the Expressive Power of 2-Stack Visibly Pushdown Automata

    Full text link
    Visibly pushdown automata are input-driven pushdown automata that recognize some non-regular context-free languages while preserving the nice closure and decidability properties of finite automata. Visibly pushdown automata with multiple stacks have been considered recently by La Torre, Madhusudan, and Parlato, who exploit the concept of visibility further to obtain a rich automata class that can even express properties beyond the class of context-free languages. At the same time, their automata are closed under boolean operations, have a decidable emptiness and inclusion problem, and enjoy a logical characterization in terms of a monadic second-order logic over words with an additional nesting structure. These results require a restricted version of visibly pushdown automata with multiple stacks whose behavior can be split up into a fixed number of phases. In this paper, we consider 2-stack visibly pushdown automata (i.e., visibly pushdown automata with two stacks) in their unrestricted form. We show that they are expressively equivalent to the existential fragment of monadic second-order logic. Furthermore, it turns out that monadic second-order quantifier alternation forms an infinite hierarchy wrt words with multiple nestings. Combining these results, we conclude that 2-stack visibly pushdown automata are not closed under complementation. Finally, we discuss the expressive power of B\"{u}chi 2-stack visibly pushdown automata running on infinite (nested) words. Extending the logic by an infinity quantifier, we can likewise establish equivalence to existential monadic second-order logic

    Local Normal Forms for First-Order Logic with Applications to Games and Automata

    Get PDF
    Building on work of Gaifman [Gai82] it is shown that every first-order formula is logically equivalent to a formula of the form ∃ x_1,...,x_l, \forall y, φ where φ is r-local around y, i.e. quantification in φ is restricted to elements of the universe of distance at most r from y. \par From this and related normal forms, variants of the Ehrenfeucht game for first-order and existential monadic second-order logic are developed that restrict the possible strategies for the spoiler, one of the two players. This makes proofs of the existence of a winning strategy for the duplicator, the other player, easier and can thus simplify inexpressibility proofs. \par As another application, automata models are defined that have, on arbitrary classes of relational structures, exactly the expressive power of first-order logic and existential monadic second-order logic, respectively

    Second-Order Finite Automata

    Get PDF
    Traditionally, finite automata theory has been used as a framework for the representation of possibly infinite sets of strings. In this work, we introduce the notion of second-order finite automata, a formalism that combines finite automata with ordered decision diagrams, with the aim of representing possibly infinite sets of sets of strings. Our main result states that second-order finite automata can be canonized with respect to the second-order languages they represent. Using this canonization result, we show that sets of sets of strings represented by second-order finite automata are closed under the usual Boolean operations, such as union, intersection, difference and even under a suitable notion of complementation. Additionally, emptiness of intersection and inclusion are decidable. We provide two algorithmic applications for second-order automata. First, we show that several width/size minimization problems for deterministic and nondeterministic ODDs are solvable in fixed-parameter tractable time when parameterized by the width of the input ODD. In particular, our results imply FPT algorithms for corresponding width/size minimization problems for ordered binary decision diagrams (OBDDs) with a fixed variable ordering. Previously, only algorithms that take exponential time in the size of the input OBDD were known for width minimization, even for OBDDs of constant width. Second, we show that for each k and w one can count the number of distinct functions computable by ODDs of width at most w and length k in time h(|Σ|,w) ⋅ kO(1), for a suitable h:N×N→Nh:\mathbb {N}\times \mathbb {N}\rightarrow \mathbb {N}. This improves exponentially on the time necessary to explicitly enumerate all such functions, which is exponential in both the width parameter w and in the length k of the ODDs.publishedVersio

    Automata Theory on Trees and Partial Orders

    No full text
    . The paper reviews recent results which aim at generalizing finite automata theory from words and trees to labelled partial orders (presented as labelled directed acyclic graphs), with an emphasis on logical aspects. As an important type of labelled partial order we consider pictures (two-dimensional words). Graph acceptors and their specialization for pictures, "tiling systems", are presented, and their equivalence to existential monadic second-order logic is reviewed. Other restricted versions of graph acceptors are discussed, and an intuitive exposition of the recently established monadic quantifier alternation hierarchy over graphs is given. 1 Introduction The computational model of finite automaton ows a lot of its wide applicability to its good logical and algorithmic properties. Such properties are, for instance, the expressive equivalence between finite automata and monadic second-order logic over words, and the decidability of the emptiness problem (as well as the inclusion ..
    corecore