2,902 research outputs found

    Automata Theory on Sliding Windows

    Get PDF
    In a recent paper we analyzed the space complexity of streaming algorithms whose goal is to decide membership of a sliding window to a fixed language. For the class of regular languages we proved a space trichotomy theorem: for every regular language the optimal space bound is either constant, logarithmic or linear. In this paper we continue this line of research: We present natural characterizations for the constant and logarithmic space classes and establish tight relationships to the concept of language growth. We also analyze the space complexity with respect to automata size and prove almost matching lower and upper bounds. Finally, we consider the decision problem whether a language given by a DFA/NFA admits a sliding window algorithm using logarithmic/constant space

    FLEET: Butterfly Estimation from a Bipartite Graph Stream

    Full text link
    We consider space-efficient single-pass estimation of the number of butterflies, a fundamental bipartite graph motif, from a massive bipartite graph stream where each edge represents a connection between entities in two different partitions. We present a space lower bound for any streaming algorithm that can estimate the number of butterflies accurately, as well as FLEET, a suite of algorithms for accurately estimating the number of butterflies in the graph stream. Estimates returned by the algorithms come with provable guarantees on the approximation error, and experiments show good tradeoffs between the space used and the accuracy of approximation. We also present space-efficient algorithms for estimating the number of butterflies within a sliding window of the most recent elements in the stream. While there is a significant body of work on counting subgraphs such as triangles in a unipartite graph stream, our work seems to be one of the few to tackle the case of bipartite graph streams.Comment: This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Seyed-Vahid Sanei-Mehri, Yu Zhang, Ahmet Erdem Sariyuce and Srikanta Tirthapura. "FLEET: Butterfly Estimation from a Bipartite Graph Stream". The 28th ACM International Conference on Information and Knowledge Managemen

    Randomized Sliding Window Algorithms for Regular Languages

    Get PDF
    A sliding window algorithm receives a stream of symbols and has to output at each time instant a certain value which only depends on the last n symbols. If the algorithm is randomized, then at each time instant it produces an incorrect output with probability at most epsilon, which is a constant error bound. This work proposes a more relaxed definition of correctness which is parameterized by the error bound epsilon and the failure ratio phi: a randomized sliding window algorithm is required to err with probability at most epsilon at a portion of 1-phi of all time instants of an input stream. This work continues the investigation of sliding window algorithms for regular languages. In previous works a trichotomy theorem was shown for deterministic algorithms: the optimal space complexity is either constant, logarithmic or linear in the window size. The main results of this paper concerns three natural settings (randomized algorithms with failure ratio zero and randomized/deterministic algorithms with bounded failure ratio) and provide natural language theoretic characterizations of the space complexity classes

    Looking at Mean-Payoff through Foggy Windows

    Full text link
    Mean-payoff games (MPGs) are infinite duration two-player zero-sum games played on weighted graphs. Under the hypothesis of perfect information, they admit memoryless optimal strategies for both players and can be solved in NP-intersect-coNP. MPGs are suitable quantitative models for open reactive systems. However, in this context the assumption of perfect information is not always realistic. For the partial-observation case, the problem that asks if the first player has an observation-based winning strategy that enforces a given threshold on the mean-payoff, is undecidable. In this paper, we study the window mean-payoff objectives that were introduced recently as an alternative to the classical mean-payoff objectives. We show that, in sharp contrast to the classical mean-payoff objectives, some of the window mean-payoff objectives are decidable in games with partial-observation

    Sliding Window Property Testing for Regular Languages

    Get PDF
    We study the problem of recognizing regular languages in a variant of the streaming model of computation, called the sliding window model. In this model, we are given a size of the sliding window n and a stream of symbols. At each time instant, we must decide whether the suffix of length n of the current stream ("the active window") belongs to a given regular language. Recent works [Moses Ganardi et al., 2018; Moses Ganardi et al., 2016] showed that the space complexity of an optimal deterministic sliding window algorithm for this problem is either constant, logarithmic or linear in the window size n and provided natural language theoretic characterizations of the space complexity classes. Subsequently, [Moses Ganardi et al., 2018] extended this result to randomized algorithms to show that any such algorithm admits either constant, double logarithmic, logarithmic or linear space complexity. In this work, we make an important step forward and combine the sliding window model with the property testing setting, which results in ultra-efficient algorithms for all regular languages. Informally, a sliding window property tester must accept the active window if it belongs to the language and reject it if it is far from the language. We show that for every regular language, there is a deterministic sliding window property tester that uses logarithmic space and a randomized sliding window property tester with two-sided error that uses constant space
    • …
    corecore