6 research outputs found

    A Class of Reversible Primitive Recursive Functions

    Get PDF
    AbstractReversible computing is bi-deterministic which means that its execution is both forward and backward deterministic, i.e. next/previous computational step is uniquely determined. Various approaches exist to catch its extensional or intensional aspects and properties. We present a class RPRF of reversible functions which holds at bay intensional aspects and emphasizes the extensional side of the reversible computation by following the style of Dedekind-Robinson Primitive Recursive Functions. The class RPRF is closed by inversion, can only express bijections on integers — not only natural numbers —, and it is expressive enough to simulate Primitive Recursive Functions, of course, in an effective way

    Sofic-Dyck shifts

    Full text link
    We define the class of sofic-Dyck shifts which extends the class of Markov-Dyck shifts introduced by Inoue, Krieger and Matsumoto. Sofic-Dyck shifts are shifts of sequences whose finite factors form unambiguous context-free languages. We show that they correspond exactly to the class of shifts of sequences whose sets of factors are visibly pushdown languages. We give an expression of the zeta function of a sofic-Dyck shift

    Behavioural Preorders on Stochastic Systems - Logical, Topological, and Computational Aspects

    Get PDF

    Behavioural Preorders on Stochastic Systems - Logical, Topological, and Computational Aspects

    Get PDF
    Computer systems can be found everywhere: in space, in our homes, in our cars, in our pockets, and sometimes even in our own bodies. For concerns of safety, economy, and convenience, it is important that such systems work correctly. However, it is a notoriously difficult task to ensure that the software running on computers behaves correctly. One approach to ease this task is that of model checking, where a model of the system is made using some mathematical formalism. Requirements expressed in a formal language can then be verified against the model in order to give guarantees that the model satisfies the requirements. For many computer systems, time is an important factor. As such, we need our formalisms and requirement languages to be able to incorporate real time. We therefore develop formalisms and algorithms that allow us to compare and express properties about real-time systems. We first introduce a logical formalism for reasoning about upper and lower bounds on time, and study the properties of this formalism, including axiomatisation and algorithms for checking when a formula is satisfied. We then consider the question of when a system is faster than another system. We show that this is a difficult question which can not be answered in general, but we identify special cases where this question can be answered. We also show that under this notion of faster-than, a local increase in speed may lead to a global decrease in speed, and we take step towards avoiding this. Finally, we consider how to compare the real-time behaviour of systems not just qualitatively, but also quantitatively. Thus, we are interested in knowing how much one system is faster or slower than another system. This is done by introducing a distance between systems. We show how to compute this distance and that it behaves well with respect to certain properties.Comment: PhD dissertation from Aalborg Universit

    Round and computational efficiency of two-party protocols

    Get PDF
    2016 - 2017A cryptographic protocol is defined by the behaviour of the involved parties and the messages that those parties send to each other. Beside the functionality and the security that a cryptographic protocol provides, it is also important that the protocol is efficient. In this thesis we focus on the efficiency parameters of a cryptographic protocol related to the computational and round complexity. That is, we are interested in the computational cost that the parties involved in the protocol have to pay and how many interactions between the parties are required to securely implement the functionality which we are interested in. Another important aspect of a cryptographic protocol is related to the computational assumptions required to prove that the protocol is secure. The aim of this thesis is to improve the state of the art with respect to some cryptographic functionalities where two parties are involved, by providing new techniques to construct more efficient cryptographic protocols whose security can be proven by relying on better cryptographic assumptions. The thesis is divided in three parts. In the first part we consider Secure Two-Party Computation (2PC), a cryptographic technique that allows to compute a functionality in a secure way. More precisely, there are two parties, Alice and Bob, willing to compute the output of a function f given x and y as input. The values x and y represent the inputs of Alice and Bob respectively. Moreover, each party wants to keep the input secret while allowing the other party to correctly compute f(x, y). As a first result, we show the first secure 2PC protocol with black box simulation, secure under standard and generic assumption, with optimal round complexity in the simultaneous message exchange model. In the simultaneous message exchange model both parties can send a message in each round; in the rest of this thesis we assume the in each round only one party can send a message. We advance the state of the art in secure 2PC also in a relaxed setting. More precisely, in this setting a malicious party that attacks the protocol to understand the secret input of the honest party, is forced to follow the protocol description. Moreover, we consider the case in which the parties want to compute in a secure way the Set-Membership functionality. Such a functionality allows to check whether an element belongs to a set or not. The proposed protocol improves the state of the art both in terms of performance and generality. In the second part of the thesis we show the first 4-round concurrent non-malleable commitment under one-way functions. A commitment scheme allows the sender to send an encrypted message, called commitment, in such a way that the message inside the commitment cannot be opened until that an opening information is provided by the sender. Moreover, there is a unique way in which the commitment can be open. In this thesis we consider the case in which the sender sends the commitment (e.g. trough a computer network) that can be eavesdropped by an adversary. In this setting the adversary can catch the commitment C and modify it thus obtaining a new commitment C0 that contains a message related to the content of C. A non-malleable commitment scheme prevents such attack, and our scheme can be proved secure even in the case that the adversary can eavesdrop multiple commitments and in turn, compute and send multiple commitments. The last part of the thesis concerns proof systems. Let us consider an NP-language, like the language of graph Hamiltonicity. A proof system allows an entity called prover to prove that a certain graph (instance) contains a Hamiltonian cycle (witness) to another entity called verifier. A proof system can be easily instantiated in one round by letting the prover to send the cycle to the verifier. What we actually want though, is a protocol in which the prover is able to convince the verifier that a certain graph belongs to the language of graph Hamiltonicity, but in such a way that no information about the cycle is leaked to the verifier. This kind of proof systems are called Zero Knowledge. In this thesis we show a non-interactive Zero-Knowledge proof system, under the assumption that both prover and verifier have access to some honestly generated common reference string (CRS). The provided construction improves the state of the art both in terms of efficiency and generality. We consider also the scenario in which prover and verifier do not have access to some honestly generated information and study the notion of Witness Indistinguishability. This notion considers instances that admit more than one witness, e.g. graphs that admit two distinct Hamiltonian cycle (as for the notion of Zero Knowledge, the notion of Witness Indistinguishability makes sense for all the languages in NP, but for ease of exposition we keep focusing our attention of the language of graph Hamiltonicity). The security notion of Witness-Indistinguishability ensures that a verifier, upon receiving a proof from a prover, is not able to figure out which one of the two Hamiltonian cycles has been used by the prover to compute the proof. Even though the notion of Witness Indistinguishability is weaker than the notion of Zero Knowledge, Witness Indistinguishability is widely used in many cryptographic applications. Moreover, given that a Witness-Indistinguishable protocol can be constructed using just three rounds of communication compared to the four rounds required to obtain Zero Knowledge (with black-box simulation), the use of Zero-Knowledge as a building block to construct a protocol with an optimal number of rounds is sometimes prohibitive. Always in order to provide a good building block to construct more complicated cryptographic protocols with a nice round complexity, a useful property is the so called Delayed-Input property. This property allows the prover to compute all but the last round of the protocol without knowing the instance nor the witness. Also, the Delayed-Input property allows the verifier to interact with the prover without knowing the instance at all (i.e. the verifier needs the instance just to decide whether to accept or not the proof received by the prover). In this thesis we provide the first efficient Delayed-Input Witness-Indistinguishable proof system that consists of just three round of communication. [edited by author]XVI n.s
    corecore