4 research outputs found

    Automated discovery of generalized standard material models with EUCLID

    Full text link
    We extend the scope of our approach for unsupervised automated discovery of material laws (EUCLID) to the case of a material belonging to an unknown class of behavior. To this end, we leverage the theory of generalized standard materials, which encompasses a plethora of important constitutive classes. We show that, based only on full-field kinematic measurements and net reaction forces, EUCLID is able to automatically discover the two scalar thermodynamic potentials, namely, the Helmholtz free energy and the dissipation potential, which completely define the behavior of generalized standard materials. The a priori enforced constraint of convexity on these potentials guarantees by construction stability and thermodynamic consistency of the discovered model; balance of linear momentum acts as a fundamental constraint to replace the availability of stress-strain labeled pairs; sparsity promoting regularization enables the automatic selection of a small subset from a possibly large number of candidate model features and thus leads to a parsimonious, i.e., simple and interpretable, model. Importantly, since model features go hand in hand with the correspondingly active internal variables, sparse regression automatically induces a parsimonious selection of the few internal variables needed for an accurate but simple description of the material behavior. A fully automatic procedure leads to the selection of the hyperparameter controlling the weight of the sparsity promoting regularization term, in order to strike a user-defined balance between model accuracy and simplicity. By testing the method on synthetic data including artificial noise, we demonstrate that EUCLID is able to automatically discover the true hidden material model from a large catalog of constitutive classes, including elasticity, viscoelasticity, elastoplasticity, viscoplasticity, isotropic and kinematic hardening

    Voxel‐based finite elements with hourglass control in fast Fourier transform‐based computational homogenization

    Get PDF
    The power of fast Fourier transform (FFT)-based methods in computational micromechanics critically depends on a seamless integration of discretization scheme and solution method. In contrast to solution methods, where options are available that are fast, robust and memory-efficient at the same time, choosing the underlying discretization scheme still requires the user to make compromises. Discretizations with trigonometric polynomials suffer from spurious oscillations in the solution fields and lead to ill-conditioned systems for complex porous materials, but come with rather accurate effective properties for finitely contrasted materials. The staggered grid discretization, a finite-volume scheme, is devoid of bulk artifacts in the solution fields and works robustly for porous materials, but does not handle anisotropic materials in a natural way. Fully integrated finite-element discretizations share the advantages of the staggered grid, but involve a higher memory footprint, require a higher computational effort due to the increased number of integration points and typically overestimate the effective properties. Most widely used is the rotated staggered grid discretization, which may also be viewed as an underintegrated trilinear finite element discretization, which does not impose restrictions on the constitutive law, has fewer artifacts than Fourier-type discretizations and leads to rather accurate effective properties. However, this discretization comes with two downsides. For a start, checkerboard artifacts are still present. Second, convergence problems occur for complex porous microstructures. The work at hand introduces FFT-based solution techniques for underintegrated trilinear finite elements with hourglass control. The latter approach permits to suppress local hourglass modes, which stabilizes the convergence behavior of the solvers for porous materials and removes the checkerboards from the local solution field. Moreover, the hourglass-control parameter can be adjusted to “soften” the material response compared to fully integrated elements, using only a single integration point for nonlinear analyses at the same time. To be effective, the introduced technology requires a displacement-based implementation. The article exposes an efficient way for doing so, providing minimal interfaces to the most commonly used solution techniques and the appropriate convergence criterion

    AutoMat -- Automatic Differentiation for Generalized Standard Materials on GPUs

    Full text link
    We propose a universal method for the evaluation of generalized standard materials that greatly simplifies the material law implementation process. By means of automatic differentiation and a numerical integration scheme, AutoMat reduces the implementation effort to two potential functions. By moving AutoMat to the GPU, we close the performance gap to conventional evaluation routines and demonstrate in detail that the expression level reverse mode of automatic differentiation as well as its extension to second order derivatives can be applied inside CUDA kernels. We underline the effectiveness and the applicability of AutoMat by integrating it into the FFT-based homogenization scheme of Moulinec and Suquet and discuss the benefits of using AutoMat with respect to runtime and solution accuracy for an elasto-viscoplastic example.Comment: 28 pages, 15 figures, 7 tables; new layout, more detailed proof of Theorem

    A review of nonlinear FFT-based computational homogenization methods

    Get PDF
    Since their inception, computational homogenization methods based on the fast Fourier transform (FFT) have grown in popularity, establishing themselves as a powerful tool applicable to complex, digitized microstructures. At the same time, the understanding of the underlying principles has grown, in terms of both discretization schemes and solution methods, leading to improvements of the original approach and extending the applications. This article provides a condensed overview of results scattered throughout the literature and guides the reader to the current state of the art in nonlinear computational homogenization methods using the fast Fourier transform
    corecore