284 research outputs found

    Sparse matrix-vector multiplication on GPGPUs

    Get PDF
    The multiplication of a sparse matrix by a dense vector (SpMV) is a centerpiece of scientific computing applications: it is the essential kernel for the solution of sparse linear systems and sparse eigenvalue problems by iterative methods. The efficient implementation of the sparse matrix-vector multiplication is therefore crucial and has been the subject of an immense amount of research, with interest renewed with every major new trend in high performance computing architectures. The introduction of General Purpose Graphics Processing Units (GPGPUs) is no exception, and many articles have been devoted to this problem. With this paper we provide a review of the techniques for implementing the SpMV kernel on GPGPUs that have appeared in the literature of the last few years. We discuss the issues and trade-offs that have been encountered by the various researchers, and a list of solutions, organized in categories according to common features. We also provide a performance comparison across different GPGPU models and on a set of test matrices coming from various application domains

    Analytical cost metrics: days of future past

    Get PDF
    2019 Summer.Includes bibliographical references.Future exascale high-performance computing (HPC) systems are expected to be increasingly heterogeneous, consisting of several multi-core CPUs and a large number of accelerators, special-purpose hardware that will increase the computing power of the system in a very energy-efficient way. Specialized, energy-efficient accelerators are also an important component in many diverse systems beyond HPC: gaming machines, general purpose workstations, tablets, phones and other media devices. With Moore's law driving the evolution of hardware platforms towards exascale, the dominant performance metric (time efficiency) has now expanded to also incorporate power/energy efficiency. This work builds analytical cost models for cost metrics such as time, energy, memory access, and silicon area. These models are used to predict the performance of applications, for performance tuning, and chip design. The idea is to work with domain specific accelerators where analytical cost models can be accurately used for performance optimization. The performance optimization problems are formulated as mathematical optimization problems. This work explores the analytical cost modeling and mathematical optimization approach in a few ways. For stencil applications and GPU architectures, the analytical cost models are developed for execution time as well as energy. The models are used for performance tuning over existing architectures, and are coupled with silicon area models of GPU architectures to generate highly efficient architecture configurations. For matrix chain products, analytical closed form solutions for off-chip data movement are built and used to minimize the total data movement cost of a minimum op count tree

    Portable performance on heterogeneous architectures

    Get PDF
    Trends in both consumer and high performance computing are bringing not only more cores, but also increased heterogeneity among the computational resources within a single machine. In many machines, one of the greatest computational resources is now their graphics coprocessors (GPUs), not just their primary CPUs. But GPU programming and memory models differ dramatically from conventional CPUs, and the relative performance characteristics of the different processors vary widely between machines. Different processors within a system often perform best with different algorithms and memory usage patterns, and achieving the best overall performance may require mapping portions of programs across all types of resources in the machine. To address the problem of efficiently programming machines with increasingly heterogeneous computational resources, we propose a programming model in which the best mapping of programs to processors and memories is determined empirically. Programs define choices in how their individual algorithms may work, and the compiler generates further choices in how they can map to CPU and GPU processors and memory systems. These choices are given to an empirical autotuning framework that allows the space of possible implementations to be searched at installation time. The rich choice space allows the autotuner to construct poly-algorithms that combine many different algorithmic techniques, using both the CPU and the GPU, to obtain better performance than any one technique alone. Experimental results show that algorithmic changes, and the varied use of both CPUs and GPUs, are necessary to obtain up to a 16.5x speedup over using a single program configuration for all architectures.United States. Dept. of Energy (Award DE-SC0005288)United States. Defense Advanced Research Projects Agency (Award HR0011-10-9-0009)National Science Foundation (U.S.) (Award CCF-0632997

    All-Pairs Shortest-Paths for Large Graphs on the GPU

    Get PDF
    The all-pairs shortest-path problem is an intricate part in numerous practical applications. We describe a shared memory cache efficient GPU implementation to solve transitive closure and the all-pairs shortest-path problem on directed graphs for large datasets. The proposed algorithmic design utilizes the resources available on the NVIDIA G80 GPU architecture using the CUDA API. Our solution generalizes to handle graph sizes that are inherently larger then the DRAM memory available on the GPU. Experiments demonstrate that our method is able to significantly increase processing large graphs making our method applicable for bioinformatics, internet node traffic, social networking, and routing problems

    RT-CUDA: A Software Tool for CUDA Code Restructuring

    Get PDF
    corecore