
Sparse Matrix-Vector Multiplication on GPGPUs

SALVATORE FILIPPONE
Cranfield University

VALERIA CARDELLINI

DAVIDE BARBIERI
ALESSANDRO FANFARILLO

Università degli Studi di Roma “Tor Vergata”

Abstract

The multiplication of a sparse matrix by a dense vector (SpMV) is a
centerpiece of scientific computing applications: it is the essential kernel
for the solution of sparse linear systems and sparse eigenvalue problems
by iterative methods. The efficient implementation of the sparse matrix-
vector multiplication is therefore crucial and has been the subject of an
immense amount of research, with interest renewed with every major new
trend in high performance computing architectures. The introduction of
General Purpose Graphics Processing Units (GPGPUs) is no exception,
and many articles have been devoted to this problem.

With this paper we provide a review of the techniques for implementing
the SpMV kernel on GPGPUs that have appeared in the literature of
the last few years. We discuss the issues and tradeoffs that have been
encountered by the various researchers, and a list of solutions, organized in
categories according to common features. We also provide a performance
comparison across different GPGPU models and on a set of test matrices
coming from various application domains.

Categories and subject descriptors:D.2.11[Software Engineering]: Soft-
ware Architectures—Data abstraction; G.1.3[Numerical Analysis]: Nu-
merical Linear Algebra—Sparse, structured, and very large systems (direct
and iterative methods); G.4[Mathematical Software]: Algorithm design
and analysis.

General terms:Mathematics of computing, Algorithms, Design
Additional Key Words:Sparse Matrices, GPU programming.

Author’s addresses: School of Aerospace, Transport and Manufactur-
ing, Cranfield University, Cranfield, MK43 0AL, United Kingdom, e-mail
address: salvatore.filippone@cranfield.ac.uk; Dipartimento di Ingegneria
Civile e Ingegneria Informatica, Università degli Studi di Roma “Tor
Vergata”, Via del Politecnico 1, 00133 Roma, Italy, e-mail addresses:
cardellini@ing.uniroma2.it, fanfarillo@ing.uniroma2.it.

1

e802180
Text Box
Filippone S, Cardellini V, Barbieri D, Fanfarillo A, Sparse matrix-vector multiplication on GPGPUs, ACM Transactions on Mathematical Software, Volume 43, Issue 4 March 2017, Article 30.

e802180
Text Box
Published by Association for Computing Machinery (ACM). This is the Author Accepted Manuscript issued with:Creative Commons Attribution Non-Commercial License (CC:BY:NC 3.0). The final published version is available online at 10.1145/3017994. Please refer to any applicable publisher terms of use.

1 Introduction

The topic we are about to discuss is a single, apparently very simple, computa-
tional kernel: the multiplication of a vector by a sparse matrix. This opening
statement begs the obvious question of what we mean by sparse matrix. The
most famous definition of “sparse matrix” is attributed to James Wilkinson, one
of the founding fathers of numerical linear algebra [28]:

Any matrix with enough zeros that it pays to take advantage of
them.

Denoting by NZ the number of nonzero coefficients, we then have that an M×N
matrix is sparse when

NZ �M ×N.
Indeed, it is quite common for A ∈ Rn×n to have a number of nonzeros that
is O(n), that is, the average number of nonzero elements per row (column) is
bounded independently of the total number of rows (columns).

Sparse matrices are a main staple of scientific computations; indeed, they
are one of the “Seven Dwarfs”, a set of numerical methods essential to compu-
tational science and engineering [23, 102, 35] that have driven the development
of software for high performance computing environments over the years.

Most problems of mathematical physics require the approximate solution of
differential equations; to this end, the equations have to be transformed into
algebraic equations, or discretized. A general feature of most discretization
methods, including finite differences, finite elements, and finite volumes [62,
86, 84], is that the number of entries in each discretized equation depends on
local topological features of the discretization, and not on the global domain
size. Thus, many problems deal with sparse matrices; far from being unusual,
sparse matrices are extremely common in scientific computing, and the related
techniques are extremely important.

The fact that the discretized linear systems are sparse affects the techniques
used for their solution. The usual factorization methods found in LAPACK
and similar libraries [4, 21] normally destroy the sparsity structure of a matrix
by introducing fill-in, that is, new nonzero entries in addition to those already
present in the original matrix; thus, memory requirements grow, and the ma-
trices become unmanageable.

The main alternative is to use an iterative solver, and currently the most
popular ones are those based on Krylov subspace projection methods [88, 53,
42]. From a software point of view, all Krylov methods employ the matrix
A only to perform matrix-vector products y ← Ax, hence they do not alter
the nonzero structure and memory requirements, and they require an efficient
implementation of the matrix-vector product.

The optimization of the Sparse Matrix-Vector multiplication (SpMV) presents
significant challenges in any computer architecture. The SpMV kernel is well-
known to be a memory bounded application; and its bandwidth usage is strongly
dependent on both the input matrix and on the underlying computing plat-
form(s). The history of its efficient implementations is largely a story of data

2

structures and of their match (or lack thereof) to the architecture of the comput-
ers employed to run the iterative solver codes. Many research efforts have been
devoted to managing the complexity of multiple data storage formats; among
them we refer the reader to [33] and [39].

General Purpose Graphics Processing Units (GPGPUs) [69] are today an
established and attractive choice in the world of scientific computing, found
in many among the fastest supercomputers on the Top 500 list, and even be-
ing offered as a Cloud service, e.g., Amazon EC2. The GPGPU cards pro-
duced by NVIDIA are today among the most popular computing platforms;
their architectural model is based on a scalable array of multi-threaded stream-
ing multi-processors, each composed by a fixed number of scalar processors, a
set of dual-issue instruction fetch units, on-chip fast memory, plus additional
special-function hardware. A large variety of complex algorithms can indeed
exploit GPGPUs and gain significant performance benefits (e.g., [50, 9, 99]).
For graphics cards produced by NVIDIA, the programming model of choice is
CUDA [81, 89]; a CUDA program consists of a host program that runs on the
CPU host, and a kernel program that executes on the GPU itself. The host pro-
gram typically sets up the data and transfers it to and from the GPU/GPGPU,
while the kernel program performs the main processing tasks.

GPGPUs have a Single Instruction Multiple Threads (SIMT) architecture,
meaning that the same instruction is scheduled across different threads; thus
they implement in a natural way the Single Instruction Multiple Data (SIMD)
programming paradigm. GPGPUs appear good candidates for scientific com-
puting applications, and therefore they have attracted much interest for op-
erations on sparse matrices, such as the matrix-vector multiplication; many
researchers have taken interest in the SpMV kernel, as witnessed for example
by the works [11, 14, 22, 27, 56, 78, 85, 96], and the development of CUSP [24]
and NVIDIA’s cuSPARSE [82] libraries.

Implementation of SpMV on computing platforms such as GPUs is certainly
no exception to the general trends we have mentioned. The main issue with
the SpMV kernel on GPGPUs is the (mis)match between the SIMD architec-
ture and the irregular data access pattern of many sparse matrices; hence, the
development of this kernel revolves around devising data structures acting as
“adapters”.

In the rest of this paper we provide an extensive review of storage formats
employed on modern GPGPUs that have appeared in the literature in recent
years, including some of our own variations on the theme. We also present
a performance comparison of some publicly available (or kindly provided by
their authors) storage formats across different GPU models and on a set of test
matrices coming from various application domains.

We begin in Section 2 by presenting an overview of traditional sparse storage
formats, detailing their advantages and disadvantages in the context of the
SpMV kernel. In Section 3 we briefly introduce some of the characteristics of
the GPGPU computing platform. This prepares the ground for the overview of
recent efforts in the GPGPU programming world in Section 4, giving the reader
an up-to-date picture of the state of the art, including the variations on existing

3

storage formats that we have devised in the framework of PSBLAS [39, 19].
Section 5 provides a comparison of the various formats on different GPU models,
highlighting the complex and sometimes surprising interactions between sparse
matrix structures, data structures and architectures. Section 6 closes the paper
and outlines future work.

2 Storage Formats for Sparse Matrices

Let us return to the sparse matrix definition by Wilkinson:

Any matrix with enough zeros that it pays to take advantage of
them.

This definition implicitly refers to some operation in the context of which we
are “taking advantage” of the zeros; experience shows that it is impossible to
exploit the matrix structure in a way that is uniformly good across multiple
operators, let alone multiple computing architectures. It is therefore desirable
to have a flexible framework that allows to switch among different formats as
needed; these ideas are further explored in [19, 39].

The usual two-dimensional array storage is a linear mapping that stores
the coefficient A(I, J) of an M × N matrix at position (J − 1) ×M + I of a
linear array. This formula assumes column-major ordering used in Fortran and
Matlab; an analogous formula applies for row-major storage used in C and Java.
Thus representing a matrix in memory requires just one linear array, and two
integer values detailing the size of the matrix.

Now enter sparse matrices: “taking advantage” of the zeros essentially means
avoiding their explicit storage. But this means that the simple mapping between
the index pair (I, J) and the position of the coefficient in memory is destroyed.
Therefore, all sparse matrix storage formats are devised around means of re-
building this map using auxiliary index information: a pair of dimensions does
not suffice any longer. How costly this rebuilding is in the context of the oper-
ations we want to perform is the critical issue we need to investigate. Indeed,
performance of sparse matrix kernels is typically much less than that of their
dense counterparts, precisely because of the need to retrieve index information
and the associated memory traffic. Moreover, whereas normal storage formats
allow for sequential and/or blocked accesses to memory in the input and out-
put vectors x and y, sparse storage means that coefficients stored in adjacent
positions in the sparse matrix may operate on vector entries that are quite far
apart, depending on the pattern of nonzeros contained in the matrix.

By now it should be clear that the performance of sparse matrix computa-
tions depends critically on the specific representation chosen. Multiple factors
contribute to determine the overall performance:

• the match between the data structure and the underlying computing ar-
chitecture, including the possibility of exploiting special hardware instruc-
tions;

4

• the suitability of the data structure to decomposition into independent,
load-balanced work units;

• the amount of overhead due to the explicit storage of indices;

• the amount of padding with explicit zeros that may be necessary;

• the interaction between the data structure and the distribution of nonzeros
(pattern) within the sparse matrix;

• the relation between the sparsity pattern and the sequence of memory
accesses especially into the x vector.

Many storage formats have been invented over the years; a number of attempts
have also been directed at standardizing the interface to these data formats for
convenient usage (see e.g., [33]).

We will now review three very simple and widely-used data formats: CO-
Ordinate (COO), Compressed Sparse Rows (CSR), and Compressed Sparse
Columns (CSC). These three formats are probably the closest we can get to
a “general purpose” sparse matrix representation. We will describe each stor-
age format and the related algorithms in a pseudo-Matlab notation, with 1-base
indexing, which can be readily translated into either Fortran or C. For each for-
mat, we will show the representation of the example matrix shown in Figure 1.
Throughout the paper we will refer to the notation introduced in Table 1.

Table 1: Notation for parameters describing a sparse matrix
Name Description
M Number of rows in matrix
N Number of columns in matrix
NZ Number of nonzeros in matrix
AVGNZR Average number of nonzeros per row
MAXNZR Maximum number of nonzeros per row
NDIAG Number of nonzero diagonals
AS Coefficients array
IA Row indices array
JA Column indices array
IRP Row start pointers array
JCP Column start pointers array
NZR Number of nonzeros per row array
OFFSET Offset for diagonals

2.1 COOrdinate

The COO format is a particularly simple storage scheme, defined by the three
scalars M, N, NZ and the three arrays IA, JA and AS. By definition of number
of rows we have 1 ≤ IA(i) ≤ M , and likewise for the columns; a graphical
description is given in Figure 2.

The code to compute the matrix-vector product y = Ax is shown in Alg. 2.1;
it costs five memory reads, one memory write and two floating-point operations

5

Figure 1: Example of sparse matrix

1 1 1 2 2 2 3 3

1 2 8 1 3 9 2 8

AS ARRAY

JA ARRAY

IA ARRAY

Figure 2: COO compression of matrix in Figure 1

per iteration, that is, per nonzero coefficient. Note that the code will produce
the result y even if the coefficients and their indices appear in an arbitrary order
inside the COO data structure.

2.2 Compressed Sparse Rows

The CSR format is perhaps the most popular sparse matrix representation. It
explicitly stores column indices and nonzero values in two arrays JA and AS and
uses a third array of row pointers IRP, to mark the boundaries of each row. The
name is based on the fact that the row index information is compressed with

Algorithm 2.1 Matrix-Vector product in COO format

for i =1:nz
i r = i a (i) ;
j c = ja (i) ;
y (i r) = y (i r) + as (i)∗x (j c) ;

end

6

respect to the COO format, after having sorted the coefficients in row-major
order. Figure 3 illustrates the CSR representation of the example matrix shown
in Figure 1.

1 2 8 1 3

1 4 7 10 14

9 2 8

AS ARRAY

JA ARRAY

IRP ARRAY

Figure 3: CSR compression of matrix in Figure 1

Algorithm 2.2 Matrix-Vector product in CSR format

for i =1:m
t =0;
for j=i r p (i) : i r p (i +1)−1

t = t + as (j)∗x (ja (j)) ;
end
y (i) = t ;

end

Algorithm 2.3 Matrix-Vector product in CSC format

for j =1:n
t=x (j) ;
for i=jcp (j) : j cp (j +1)−1

y (i a (i)) = y (i a (i)) + as (i)∗ t ;
end

end

The code to compute the matrix-vector product y = Ax is shown in Alg. 2.2;
it requires three memory reads and two floating-point operations per iteration
of the inner loop, i.e., per nonzero coefficient; the cost of the access to x(ja(j))

is highly dependent on the matrix pattern and on its interaction with the mem-
ory hierarchy and cache structure. In addition, each iteration of the outer
loop, i.e., each row of the matrix, requires reading the pointer values irp(i)

and irp(i+1), with one of them available from the previous iteration, and one
memory write for the result.

7

2.3 Compressed Sparse Columns

The CSC format is extremely similar to CSR, except that the matrix values
are first grouped by column, a row index is stored for each value, and column
pointers are used; the resulting code is shown in Alg. 2.3. This format is used
by the UMFPACK sparse factorization package [29], although it is less common
for iterative solver applications.

2.4 Storage Formats for Vector Computers

The previous data formats can be thought of as “general-purpose”, at least to
some extent, in that they can be used on most computing platforms with little
or no changes. Additional (and somewhat machine oriented) formats become
necessary when moving onto special computing architectures if we want to fully
exploit their capabilities.

Vector processors were very popular in the 1970s and 80s, and their tradition
is to some extent carried on by the various flavors of vector extensions available
in x86-like processors from Intel and other manufacturers. The main issue with
vector computers is to find a good compromise between the introduction of a
certain amount of “regularity” in the data structure to allow the use of vector
instructions and the amount of overhead entailed by this preprocessing.

Many storage formats were developed for vector machines, including the
diagonal (DIA), ELLPACK (or ELL), and Jagged Diagonals (JAD) formats.

The ELLPACK/ITPACK format (shown in Figure 4) in its original concep-
tion comprises two 2-dimensional arrays AS and JA with M rows and MAXNZR

columns, where MAXNZR is the maximum number of nonzeros in any row [54].
Each row of the arrays AS and JA contains the coefficients and column indices;
rows shorter than MAXNZR are padded with zero coefficients and appropriate
column indices (e.g., the last valid one found in the same row).

1

1

2

3

2

3

8

4

8

9

10

107

AS ARRAY JA ARRAY

Figure 4: ELLPACK compression of matrix in Figure 1

The code to compute the matrix-vector product y = Ax is shown in Alg. 2.4;
it costs one memory write per outer iteration, plus three memory reads and two
floating-point operations per inner iteration. Unless all rows have exactly the
same number of nonzeros, some of the coefficients in the AS array will be zeros;
therefore this data structure will have an overhead both in terms of memory

8

Algorithm 2.4 Matrix-Vector product in ELL format

for i =1:m
t =0;
for j =1:maxnzr

t = t + as (i , j)∗x (ja (i , j)) ;
end
y (i) = t ;

end

space and redundant operations (multiplications by zero). The overhead can be
acceptable if:

1. The maximum number of nonzeros per row is not much larger than the
average;

2. The regularity of the data structure allows for faster code, e.g., by allowing
vectorization, thereby offsetting the additional storage requirements.

In the extreme case where the input matrix has one full row, the ELLPACK
structure would require more memory than the normal 2D array storage.

A popular variant of ELLPACK is the JAgged Diagonals (JAD) format.
The basic idea is to preprocess the sparse matrix by sorting rows based on the
number of nonzeros; then, an ELLPACK-like storage is applied to blocks of
rows, so that padding is limited to a given block. On vector computers the size
of the block is typically determined by the vector register length of the machine
employed.

-2 -1 0 1 2 7

AS ARRAY OFFSET ARRAY

Figure 5: DIA compression of matrix in Figure 1

The DIAgonal (DIA) format (shown in Figure 5) in its original conception
comprises a 2-dimensional array AS containing in each column the coefficients
along a diagonal of the matrix, and an integer array OFFSET that determines
where each diagonal starts. The diagonals in AS are padded with zeros as
necessary.

The code to compute the matrix-vector product y = Ax is shown in Alg. 2.5;
it costs one memory read per outer iteration, plus three memory reads, one mem-
ory write and two floating-point operations per inner iteration. The accesses

9

Algorithm 2.5 Matrix-Vector product in DIA format

for j =1: ndiag
i f (o f f s e t (j) > 0)

i r 1 = 1 ; i r 2 = m − o f f s e t (j) ;
else

i r 1 = 1 − o f f s e t (j) ; i r 2 = m;
end
for i=i r 1 : i r 2

y (i) = y (i) + as (i , j)∗x (i+o f f s e t (j)) ;
end

end

to AS and x are in strict sequential order, therefore no indirect addressing is
required.

3 GPGPUs

The NVIDIA GPGPU architectural model is based on a scalable array of multi-
threaded, streaming multi-processors, each composed of a fixed number of scalar
processors, one or more instruction fetch units, on-chip fast memory, which is
partitioned into shared memory and L1 cache on older Fermi and Kepler gener-
ations but is physically separated on newer Maxwell and Pascal, plus additional
special-function hardware.

CUDA is the programming model provided by NVIDIA for its GPGPUs; a
CUDA program consists of a host program that runs on the CPU host, and a
kernel program that executes on the GPU device.

The computation is carried on by threads grouped into blocks. More than
one block can execute on the same multiprocessor, and each block executes
concurrently. During the invocation (also called grid) of a kernel, the host
program defines the execution configuration, that is:

• how many blocks of threads should be executed;

• the number of threads per block.

Each thread has an identifier within the block and an identifier of its block within
the grid (see Figure 6). All threads share the same entry point in the kernel;
the thread ID can then be used to specialize the thread action and coordinate
with that of the other threads.

Figures 7 and 8 describe the underlying SIMT architecture. Note that in
principle a single host may be connected with multiple devices. Each GPU
device is made up by an array of multiprocessors and a global memory. The
host is connected to devices using a bus, often having a much smaller bandwidth
than that of the device global memory. Multiprocessors execute only vector
instructions; a vector instruction specifies the execution on a set of threads

10

Figure 6: A 2D grid of threads

MULTIPROCESSOR MULTIPROCESSOR MULTIPROCESSOR

GLOBAL MEMORY

DEVICE

HOST

Figure 7: SIMT model: host and device

(called warp) with contiguous identifiers inside the block. The warp size is a
characteristic constant of the architecture; its value is currently 32 for NVIDIA’s
GPUs. If threads within a warp execute different branches, the warp will issue a
sequence of instructions covering all different control flows, and mask execution
on the various threads according to their paths; this phenomenon is called thread
divergence.

Each grid is executed on a single device; each thread block is enqueued and
then scheduled on a multi-processor with enough available resources (in terms
of registers, shared memory, and block slots) and retains all its resources until
completion. A warp instruction is issued by a scheduler on an available vector
unit that supports the relevant class of instructions. Threads in the same block
share data using the shared memory and synchronize their execution waiting on
a barrier.

To fully exploit the available bandwidth of both shared memory and global
memory, some access rules should be followed by the threads of a warp (and, in
some cases, of a half warp, i.e., a group of 16 consecutive threads for NVIDIA’s

11

Figure 8: SIMT model: a multi-processor

GPUs). Shared memory, for example, is divided into banks, each one providing
a constant throughput in terms of bytes per clock cycle. For each different
architecture there is a specification on the correct access pattern that allows to
avoid bank conflicts. Ideally, threads with increasing identifier in the same warp
should read sequential elements of either 4 or 8 bytes in memory. Similarly,
different access patterns should be followed according to the target GPGPU
architecture to exploit the full global memory bandwidth. When these criteria
are met, accesses are called coalesced. On NVIDIA hardware, a portable pattern
which provides coalesced accesses is the following: each thread with index k
within the warp (0 ≤ k < warpSize) should access the element of size D (with
D equal to 4, 8 or 16 bytes) at address D · (Offset · warpSize+ k).

The GPGPU uses different pipelines (modeled as groups of units on a mul-
tiprocessor) to manage different kind of instructions, and so it has different
instruction throughputs. A basic arithmetic instruction, e.g., a floating-point
addition, runs in parallel with a memory load request issued by another warp
in the same clock cycle on the same multiprocessor. Therefore, to ensure best
performance we need to optimize the bottleneck caused by the slowest set of
instructions running on the same group of units. There are essentially three
types of pipeline that can be replicated on the same GPU multiprocessor:

• a pipeline for groups of floating-point and integer units;

• a pipeline for groups of special function units (used for certain specialized
arithmetic operations);

• a pipeline for groups of load/store units.

12

It is therefore pointless to speed up the arithmetic instructions of a given kernel
if its performance is limited by the memory accesses; in such a case we need
to concentrate on the efficiency of read and write requests to memory. This is
the case for the sparse matrix-vector kernel, where the amount of arithmetic
operations is usually comparable with the access requests in global memory
(having a significantly lower throughput than the ALUs).

We have to accommodate for the coordinated action of multiple threads in an
essentially SIMD fashion; however, we have to make sure that many independent
threads are available. The number of threads that are active at any given time
is called occupancy ; the optimal value to exploit the GPGPU architecture is
typically much larger than the vector lengths of vector computers, and is limited
by the availability of registers.

Performance optimization strategies also reflect the different policies adopted
by CPU and GPGPU architectures to hide memory access latency. The GPGPU
does not make use of large cache memories, but it rather exploits the concur-
rency of thousands of threads, whose resources are fully allocated and whose
instructions are ready to be dispatched on a multiprocessor.

The main optimization issue to support a GPGPU target then revolves
around how an algorithm should be implemented to take advantage of the full
throughput of the device. To make good use of the memory access features
of the architecture, we need to maximize the regularity of memory accesses to
ensure coalesced accesses. In the SpMV context, the ELLPACK format entails
a regular access pattern to read the sparse matrix values and the y input vector,
provided that we choose a memory layout for arrays ensuring their alignment to
the appropriate boundaries in memory. The access pattern is easily exploited
by assigning each row of the matrix to one thread; threads in a warp will work
on a block of contiguous rows.

4 A Survey of Sparse Matrix Formats on GPG-
PUs

A significant number of research efforts have been devoted in the last years
to improving the performance of the SpMV kernel on GPGPUs. They can be
mainly categorized into three different development directions:

• applying novel sparse matrix formats, typically derived from classic ones;

• applying architecture-specific optimizations to existing formats;

• applying automated performance tuning of the matrix format and param-
eters.

These directions are clearly not mutually exclusive. Sparse matrices coming
from different applications exhibit different sparsity patterns (i.e., distribution
of nonzero entries). Therefore, devising a one-size-fits-all solution is a nearly
impossible task; many GPGPU-specific sparse matrix representations have been

13

designed by applying some specific optimization technique best suited for a
particular sparsity pattern. Different matrices may need have their own most
appropriate storage formats to achieve best performance. Auto-tuning methods
determining a combination of parameters that provides best performance can
be effective for SpMV, since the optimal storage scheme is dependent upon
the sparsity pattern. However, it is also important to consider general storage
schemes that can efficiently store matrices with arbitrary sparsity patterns.

In this section we first classify and review a number of research efforts that
proposed novel formats or format optimizations to efficiently represent sparse
matrices on GPGPUs. Each format has its own strengths and weaknesses as
explained in the following sections. We mainly classify the formats according
to the base sparse matrix format (i.e., COO, CSR, CSC, ELL, DIA) they ex-
tend or derive from. We also consider those efforts that either propose a hybrid
approach, where multiple formats can be used depending on the matrix spar-
sity pattern and other matrix parameters, or define a new storage format which
does not directly extend existing ones. Then, in Section 4.8 we review some
works devoted to study performance optimizations and propose automated tun-
ing frameworks for SpMV on GPGPUs.

Table 2 summarizes the results of our taxonomy and provides a quick ref-
erence guide to the reader. In the table we also include the availability of the
source code to the best of our knowledge. As also observed in [60], it would be
beneficial for the HPC community to have open source code of matrix formats
available, so to allow a detailed performance comparison. According to our
survey, at the time of writing only 24 out of the 71 formats that we analyzed
have been made available by their authors, either publicly or on demand. We
also observe that few papers include links about implementation codes that are
publicly available and some of these links are no longer valid.

Table 2: Taxonomy of GPGPU-specific sparse matrix formats

Base format Issues GPGPU variants Available

COO

Memory
footprint,
atomic data
access

ALIGNED COO [91] 7
SCOO [27] 3
BRO-COO [95] 7
BCCOO and BCCOO+ [107] 3

CSR

Coalesced
access, thread
mapping, data
reuse

CSR optimization [13] 3
CSR optimization [11] 7
CSR optimization [46] 7
CSR optimization [36] 7
CSR optimization [87] 3
CSR optimization [112] 7
CSR optimization [100] 7
CSR optimization [79] 3
CSR optimization [3] 7
CSR optimization [44] 7
ICSR [108] 7
CSR-Adaptive [41, 25] 3
CSR5 [67] 3
ACSR [7] 7
MGPU CSR+ [12] 3
SIC [37] 7

Continued on next page

14

Continued from previous page

Base format Issues GPGPU variants Available

RgCSR [83] 3
ArgCSR [48] 3
BIN-CSR and BIN-BCSR [101] 7
CMRS [55] 7
PCSR [31] 7
LightSpMV [68] 3
BCSR optimization [16] 7
BCSR optimization [22] 7
BCSR optimization [106] 7
BCSR optimization [98] 3

CSC Coalesced
access

CSC optimization [49] 7

ELLPACK Zero padding

ELLPACK-R [96] 3
Sliced ELLPACK [78] 3
Warped ELL [72] 7
SELL-C-σ [57] 7
SELL-P [6] 3
ELLR-T [97] 3
Sliced ELLR-T [34] 7
HLL [10] 3
BELLPACK [22] 7
BSELLPACK [92] 7
AdELL [70] 7
CoAdELL [71] 7
AdELL+ [73] 7
JAD optimization [65] 3
ELLPACK-RP [17] 7
BiELL and BiJAD [114] 7
BRO-ELL [95] 7
Enhanced JDS [20] 7
pJDS [56] 7
ELL-WARP [105] 7
BTJAD [1] 3
BRC [8] 7

DIA Zero padding
DDD-NAIVE, DDD-SPLIT [113] 7
CDS [40] 7
HDI [10] 3

Hybrid

HYB [13] 3
CSR + ELL [75] 7
CSR + ELL [76] 7
HEC [66] 7
TILE-COMPOSITE [111] 3
SHEC [38] 7
Cocktail [92] 3
HDC [110] 7
ELLPACK + DIA [72] 7
BCOO + BCSR [77] 7
BRO-HYB [95] 7

Hybrid BRO-HYBR, BRO-HYBR(S) [94] 7

New
BLSI [80] 7
CRSD [93] 7

One of the first SpMV kernel implementations for GPGPUs was proposed
by Bolz et al. in [15]. The seminal work on accelerating the SpMV kernel on
CUDA-enabled GPGPUs was presented by Bell and Garland in [13, 14], who
provided a detailed study of sparse matrix formats and their access pattern on
GPGPU and implemented CUDA kernels for the main classic storage formats,
including COO, CSR, and ELL.

15

4.1 COO Variants

COO is the most intuitive storage format, is generic with respect to the sparsity
pattern (e.g., its memory footprint depends only on the number of nonzeros
and not on their distribution) but usually has worse performance than other
formats on the SpMV kernel. Such poor behavior is due to the impossibility to
achieve a simple decomposition of independent work into threads of execution;
it is not possible to know in advance, without reading the content of the stored
matrix itself, which set of coefficients will be used to calculate a single element
of the resulting vector. Consequently, intermediate results should be integrated
using segmented reductions or atomic data access [13, 14], because the absence
of any ordering makes it impossible to foresee which threads will contribute to
any given output vector entry, hence any two of them might produce conflicting
updates. Preprocessing the COO format through parallel sorting by row and
then employing parallel prefix scan is a suitable alternative to parallelization
using atomic read-modify-write [12]. Although COO does not make use of
padding, it still needs to explicitly store both the row and column indices for
every nonzero element; therefore, it provides a bad memory footprint in many
cases [92].

Shah and Patelin [91] proposed the ALIGNED COO format, which extends
COO to optimize performance of large sparse matrices presenting a skewed
distribution of nonzero elements. The ALIGNED COO format exploits some
specific techniques, such as load balancing among threads by applying a data
reordering transformation, synchronization-free load distribution, reuse of the
input vector, reduction of memory fetch operations. However, its performance
depends on the proper setting of some parameters and therefore a heuristic
policy is required.

The Sliced COO (SCOO) format has been suggested by Dang and Schimdt [27].
As the name suggests, it exploits the idea of decomposing the matrix into a
number of slices with respect to varying sparsity patterns. Their CUDA im-
plementation exploits typical GPGPU computing features such as atomic op-
erations and texture caching. However, the SCOO performance improvement
for double-precision matrices is moderate, since double-precision atomic oper-
ations on common CUDA-enabled GPGPUs either do not exist or have lower
performance than their single-precision counterpart.

Tang et al. [95] proposed to exploit lossless compression schemes tailored
for the GPGPU in order to reduce the storage size of bits required to repre-
sent a sparse matrix and thus the memory bandwidth usage. Their idea is to
compress the index data using an efficient bit representation format. The BRO-
COO format applies the compression scheme only in the row index array IA,
which is divided into intervals organized into a two-dimensional array and each
interval is processed by a warp. The exploitation of a compression scheme re-
quires to perform compression and decompression operations. The compression
can be executed offline on the host CPU, while the decompression has to be
performed online in the GPGPU before computing the matrix-vector product,
thus introducing some overhead.

16

Yan et al. [107] presented the Blocked Compressed common COOrdinate
(BCCOO) format, which extends the COO format with blocking to reduce the
size for both IA and JA arrays. BCCOO uses bit flags to store the row indices so
as to alleviate the bandwidth problem. The drawback of the BCCOO format,
which is common to all block-based formats, is the zero fill-in in the data value
array when a nonzero block contains zeros. In the same work, the authors also
proposed an extension to the BCCOO format, called BCCOO+, to improve the
access locality to the multiplied vector. In this format, the sparse matrix is first
partitioned into vertical slices and then the slices aligned in a top-down manner.
Then, the BCCOO format is applied to the vertically sliced and rearranged
matrix. Since BCCOO+ requires a temporary buffer to store the intermediate
results that are then combined to generate the final results, it is not always
preferable to BCCOO; therefore, an auto-tuning strategy is suggested to select
which format should be used. In addition, Yan et al. [107] also proposed an
efficient matrix-based segmented sum/scan to maximize the benefit from their
BCCOO and BCCOO+ formats on GPGPUs.

4.2 CSR Variants

Like COO, CSR is a flexible and general purpose format. However, this flexi-
bility has a cost when distributing the work across multiple threads; problems
range from lack of coalescing, causing an inefficient memory access pattern, to
load imbalance and thread divergence (i.e., many threads are idle while others
are busy), which can lead to a serious loss of parallel efficiency.

Various research efforts on SpMV for GPGPUs have focused on optimizing
the base CSR format. Therefore, we first analyze them and then we review those
proposals devoted to suggesting new storage formats that stem from CSR.

4.2.1 CSR Optimizations

Bell and Garland in [13] implemented two kernels for the CSR format, namely
scalar and vector, that differ in the number of threads assigned to a single row.
The scalar kernel assigns one thread per row, while the vector kernel assigns
multiple threads (precisely one warp, that is 32 threads) per row and can thus
achieve more efficient memory access patterns by exploiting coalescing, but only
when the matrix has an average number of nonzero elements per row greater
than 32. Therefore, subsequent works [11, 46, 36, 87, 112] on the CSR storage
format have focused on determining the optimal number of threads per row
on the basis of the number of nonzero elements per row. Guo and Wang [46]
proposed a method that selects the number of threads to either half-warp (16
threads) or one warp (32 threads) on the basis of the characteristics of the input
matrix. El Zein and Rendell [36] suggested to switch between the scalar and
vector methods according to the number of nonzero elements per row. The works
in [87, 112] improved the performance of the CSR vector kernel by selecting the
optimal number of threads equal to a power of 2 and no more than the warp size
on the basis of either the average [87] or the maximum [112] number of nonzero

17

elements per row. The average is preferable to the maximum because the first
does not require to pre-scan the input matrix for its computation.

The work by Baskaran and Bordawekar [11] presents some optimization tech-
niques for SpMV kernels focusing on the CSR matrix format. Their optimiza-
tions, that have become a reference point for subsequent works, include the
exploitation of synchronization-free parallelism, global memory access coalesc-
ing, aligned global memory access, and data reuse of input and output vectors.
As regards the thread mapping strategy, Baskaran and Bordawekar used 16
threads per row in order to alleviate thread divergence.

Ahamed and Magoules [3] focused on finite element matrices and presented
how to dynamically tune the gridification (i.e., the dimension of the block and
number of threads per block) when the sparse matrix is stored in CSR format.

Wang et al. [100] suggested some techniques to optimize the CSR storage
format and threads mapping, to avoid thread divergence. Specifically, they
slightly modified the CSR format to reduce the transmission time between host
and device, and set the number of threads per row to slightly more than the
average number of nonzero elements per row.

Yang et al. [108] presented an improved CSR (ICSR) storage format to
address the problem of global memory alignment of the CSR vector kernel by
adding some zero elements to the end of every row in the CSR storage format.

Mukunoki et al. [79] also proposed optimization techniques for the CSR
format but on the more recent NVIDIA Kepler architecture, taking advantage
of three new features: 48KB read-only data cache, shuffle instructions, and
expanding the number of thread blocks in the x-direction that can be defined
in a grid.

Guo and Gropp [44] presented a simple auto-tuning method to improve
SpMV performance when the sparse matrix is stored in CSR format. It consists
in sorting the rows in increasing order of the number of nonzero elements per row
and partitioning them into several ranges, and then assigning a given number of
threads for different ranges of the matrix rows in order to balance the threads
workload.

The parallelized CSR-based implementation named as LightSpMV [68] takes
advantage from the fine-grained dynamic distribution of the matrix rows. The
authors investigated two parallelization approaches at the vector and warp levels
using atomic operations and warp shuffle functions.

The CSR optimization taken by Baxter [12] with the CSR+ format in his
ModernGPU library is quite different from all others. An SpMV is considered
as a sequence of two steps. The first step, which is highly parallelizable, con-
sists of an element-by-element multiplication of matrix entries by vector entries.
The second step employs a segmented reduction to produce the final output
vector. The resulting algorithm has high efficiency and is very fast, but also
very complex to implement and modify.

Since CSR is the most memory efficient and its usage can avoid or have
minimal conversion overheads (that we analyze in Section 5.4), some more recent
efforts have also focused on keeping the CSR format intact and possibly limiting
its preprocessing [7, 41].

18

Greathouse and Daga [41] proposed the CSR-Stream and the related CSR-
Adaptive algorithms. CSR-Stream is a CSR optimization that statically fixes
the number of nonzeros that will be processed by one warp and streams these
values into the GPGPU shared memory, thus improving access coalescing and
parallelism. Since the CSR-Stream efficiency is lost when a warp operates on
rows with a large number of nonzeros, the companion CSR-Adaptive algorithm
(whose code is available in the ViennaCL library) allows to adaptively switch
between using CSR-Stream for rows with relatively few nonzeros and the tradi-
tional vector kernel [13] for rows with a large number of nonzeros. An improved
version of CSR-Adaptive has been presented by the same authors in [25] to
address the CSR-Adaptive’s poor performance on irregular matrices.

Liu and Vinter [67] proposed the CSR5 storage format, that is designed to
be cross-platform and insensitive to the sparsity pattern of the matrix, thus
being appropriate for both regular and irregular matrices. These results are
achieved through the addition of extra data structures to the standard CSR
and the execution of in-place transpose of parts of the matrix. However, the
limitations of CSR5 lie in its complexity and the matrix transpose operations,
which may cause significant overheads.

ACSR, another adaptive SpMV algorithm that relies on the standard CSR
format, has been proposed by Ashari et al. [7] for large power-law matrices. It
aims at reducing thread divergence by grouping rows into bins on the basis of
the number of nonzeros; it also leverages dynamic parallelism, a functionality
on recent NVIDIA GPUs, in order to improve memory coalescing.

4.2.2 New Formats Based on CSR

The Compressed Sparse Row with Segmented Interleave Combination (SIC)
storage format has been proposed by Feng et al. [37]. Stemming from CSR, the
SIC format employs an interleave combination pattern, that combines certain
amount of CSR rows to form a new SIC row, plus reordering and segmented
processing to further improve the performance. The SIC goals are to alleviate
thread divergence and to lessen the load imbalance among warps. However, its
drawbacks are the need to first transform in CSR and to carefully tune some
parameters, namely the number of contiguous CSR rows that will form the new
SIC row and the thread block size.

The Row-grouped CSR (RgCSR) format proposed by Oberhuber et al. [83]
aims at fulfilling the coalesced access to the array values and columns by dis-
tributing threads to matrix rows according to their computational load. The
RgCSR format first divides the matrix into groups of rows with similar work-
load; then, a different number of threads within the group is assigned to each
row depending on the number of nonzero elements in it. RgCSR requires block-
level synchronization which is less efficient than warp-level synchronization; its
row partition policy depends on a user-given parameter and may fail in the case
of matrices having a very skewed distribution of the nonzero elements. ArgCSR,
an improved version of RgCSR, was later presented [48].

The BIN-CSR storage format has been proposed by Weber et al. [101] for

19

arbitrary sparsity patterns and presents some similarity with RgCSR. BIN-CSR
combines the CSR format with a partitioning scheme that groups the matrix
entries into bins, being a bin a portion of the matrix that is accessed concurrently
by a group of threads. To optimize global memory access by coalescing, all
rows in each bin should have the same length, therefore padding is used to
complete shorter rows within a bin. The diagonal is stored separately to allow
an efficient Jacobi preconditioner. However, the storage format considers only
single precision.

A similar idea of processing a sparse matrix in chunks larger than individual
rows has been also exploited in the Compressed Multi-Row Storage (CMRS)
format presented in [55]. CMRS extends the CSR format by dividing the matrix
rows into strips; a warp is then assigned to a strip for processing. Specifically,
the row pointers IRP array used in CSR is generalized to mark the boundaries
of each strip, rather than each row. The number of rows in a strip is equal for
all the strips and is set to be a power of 2 from 1 to 16, the actual value being
limited by the buffer size in NVIDIA’s Fermi GPUs. The advantage of CMRS
is that the multiplied vector is reused. The authors evaluated the performance
of the proposed format on a large set of matrices from the UFL collection and
measured the CMRS efficiency as a function of the mean and standard deviation
of the number of matrix nonzero elements per row.

Dehnavi et al. [31] proposed the Prefetch-Compressed Row Storage (PCSR)
format, that combines CSR with a novel vector partitioning scheme, zero padding
of the matrix rows and computation strategy. Their goal was to accelerate finite-
element SpMV kernels on NVIDIA GT8800.

Blocking storage techniques can be used to improve CSR compression and
data reuse, especially of the input vector elements. BCSR is the classical blocked
version of CSR, storing and indexing two-dimensional small dense blocks with
at least one nonzero element and uses zero padding to construct full blocks [52].
Thus, BCSR reduces the indexing overhead for storing a sparse matrix but it
needs zero fill-in in the blocks. BCSR has been first investigated on GPGPUs
by Buatois and al. [16], who did not optimize for memory coalescing, and then
tuned for GPGPU by Choi et al. [22]. Xu et al. [106] proposed a cache blocking
method for the NVIDIA’s Fermi architecture: first the matrix is transformed
from CSR to BCSR format; then, one block row of the matrix is assigned to
one block of threads so that the corresponding part of the input vector can be
reused in the cache on Fermi GPU. Verschoor and Jalba [98] studied a number
of mappings for the BCSR format, that is how to map multiple block rows to
thread blocks; their results also show that block reordering can lead to a good
performance improvement thanks to better memory coalescing, especially when
small blocks are used.

A extension of the BIN-CSR format that exploits blocking and is therefore
called BIN-BCSR has been proposed in [101].

20

4.3 CSC Variants

The CSC format, which compresses each column of the matrix rather than the
rows as in CSR, has the advantage of allowing a regular access to the input
vector at the expense of irregularity of access to the output vector. Its GPGPU
implementation has been presented in [49] in two versions, with and without
vectorization. However, in their performance analysis, CSC turns out to be the
worst format because the computation of each output element requires irregu-
lar accesses to a temporary array where intermediate multiplication results are
stored to be later summed together. These poor results also explain the lack of
other works on this format, which (as already noted) is more commonly used in
the context of sparse matrix factorizations.

4.4 ELLPACK Variants

The ELLPACK format and its variants are perhaps the most effective formats
for GPGPUs and many research works have focused on them. ELLPACK is
efficient for matrices with regular or partially regular sparsity patterns, in which
the maximum number of nonzero elements per row does not differ significantly
from the average. However, when the number of nonzero elements per row
varies considerably, the ELLPACK performance degrades due to the overhead
of storing a large number of padding zeros (we recall that rows are zero-padded
in order to reach the length of the longest nonzero entry row, as described
in Section 2.4). Therefore, several proposals have been made to modify this
format so as to reduce the storage overhead and make it effective for general
sparse matrices.

The ELLPACK-R format proposed by Vázquez et al. [96] is the first variant
we examine that aims to reduce the memory bandwidth usage associated with
the padding zeros. To this end, it avoids accessing the zeros by storing the
number of nonzeros in each matrix row in an additional array. The usage of
the ELLPACK basic storage allows the GPGPU to perform coalesced access
to global memory, while the availability of the length of each row reduces the
amount of overhead arithmetic operations. ELLPACK-R is now considered a
reference storage format on GPGPUs and has been used in various papers for
performance comparison, e.g., [56, 95].

To address the zero padding issue and reduce the memory overhead of the
ELLPACK format, Monakov et al. [78] proposed a sliced version of ELLPACK
(called Sliced ELLPACK and usually abbreviated as SELL or SELL-C), which
can be considered as a generalization of ELLPACK-R. Indeed, during a prepro-
cessing the rows of the sparse matrix are reordered and partitioned into several
slices of similar lengths (being a slice a set of adjacent rows) and each slice is
then packed separately in the ELLPACK format. An additional data structure
is required to keep track of the indices of the first element in each slice. The finer
granularity allows to reduce the amount of zero padding, because in Sliced ELL-
PACK the number of extra zeros depends on the distances between the shortest
and the longest rows in slices, rather than in the whole matrix as in ELLPACK.

21

The slice size (i.e., the number of rows per slice, also denoted with C) is either
fixed for all the slices or variable for each slice; in the latter case, a heuristics
is used to find the proper slice size. Using a slice size equal to 1 results in the
CSR format, while using a slice size equal to the matrix size results in the basic
ELLPACK format. Each slice is assigned to a block of threads in CUDA and
thread load balancing can be achieved by assigning multiple threads to a row
if required. The drawback of the Sliced ELLPACK format is related to its sus-
ceptibility in picking up the right slice size, because a wrong slice configuration
can adversely affect the performance.

An improvement of Sliced ELLPACK has been proposed by Maggioni et
al. [72] and is based on warp granularity and local rearrangement to reduce the
overhead associated with the data structure. In the Warped ELL format, the
slice size is chosen to match the warp size and a local row reordering within each
slice is applied to reduce the variability of the number of nonzeros per row and
improve the data structure efficiency without affecting the cache locality. The
proposed format achieves a reasonable performance improvement over Sliced
ELLPACK for the considered set of matrices.

The use of some kind of preprocessing where rows or columns are permuted
is another interesting idea that has been exploited in a number of works [97, 57,
6, 34, 114] to improve the ELLPACK performance. Vázquez et al. [97] presented
the ELLR-T format, which extends their previously proposed ELLPACK-R for-
mat [96] by applying a preprocessing phase. During this preprocessing, nonzero
elements and their column indices are permuted and zero padding occurs and
each row is a multiple of 16 (half-size warp). Such modification aims at guar-
anteeing coalesced and aligned access to the global memory. In contrast to
ELLPACK-R, T multiple threads (with T varying from 1 to 32) may operate
on a single row to collaboratively compute one element of the output vector.
However, the amount of zero padding with respect to ELLPACK-R is not re-
duced significantly. The authors also presented an auto-tuning strategy to find
out the best combination of ELLR-T configuration parameters (the number of
threads T and the size of thread block) on the basis of the sparse matrix/GPU
architecture combination.

The Sliced ELLR-T is s a modification of Sliced ELLPACK and ELLR-T and
has been suggested by Dziekonski et al. [34] with the aim of reducing the memory
overhead of ELLPACK and obtain a good throughput. As in Sliced ELLPACK,
the matrix is divided into slices and, as in ELLR-T, multiple threads operate
on single row. Thanks to the partition into slices, Sliced ELLR-T reduces the
amount of memory required for storage as in Sliced ELLPACK.

SELL-C-σ [57] is a variant of Sliced ELLPACK that applies row sorting so
that rows with a similar number of nonzero elements are gathered in one slice,
thus minimizing the storage overhead. Such format, which has been proposed
as a unified sparse matrix data layout for modern processors with wide SIMD
units, allows optimization for a certain hardware architecture via parameters C
(the slice size) and σ (the sorting scope). Currently, such parameters need to
be manually tuned. A modification of SELL-C-σ tailored for an efficient im-
plementation on NVIDIA GPUs and resulting in the Padded Sliced ELLPACK

22

(SELL-P) format (whose code is available in the MAGMA library) has been
proposed by Anzt et al. [6]. By exploiting the assignment of multiple threads
per row as in Sliced ELLR-T, they modified SELL-C-σ by padding rows with
zeros such that the row length of each slice becomes a multiple of the number of
threads assigned to each row. However, efficient row sorting required by these
formats remains an issue to be addressed.

Tang et al. [95] proposed to apply compression schemes to the ELLPACK
format, similarly to what already done with COO. Their BRO-ELL scheme
compresses the JA array using bit packing.

Zheng et al. [114] proposed the Bisection ELLPACK (BiELL) storage format
with the aims to reduce the zero padding and improve load balance. It is
an ELLPACK based storage format; the bisection in the name refers to the
fact that when half of the unknown results are generated, all the threads are
reassigned to the other half of the rows. The BiELL format is built in a number
of preprocessing steps: (1) the matrix rows are partitioned into strips of warp
size; (2) the rows within each strip are sorted in non-increasing order of the
number of nonzero elements per row; (3) the resulting matrix is compressed
by shifting all the nonzero elements to the left; (4) according to the bisection
technique, the columns in the strips are divided into groups; (5) the elements
in each group are stored in ELL format. Similarly to Sliced ELLPACK, BiELL
partitions the matrix into strips but then it divides the strips into groups based
on the bisection technique to improve load balance.

Choi et al. [22] proposed the blocked ELLPACK (BELLPACK) storage for-
mat which exploits block structures that appear in some sparse matrices. BELL-
PACK first rearranges the rows of the sparse matrix in decreasing order of the
number of nonzero elements; then, the rows are separated into blocks and each
block is stored in the ELLPACK format. BELLPACK is thus an extension
of ELLPACK with explicit storage of dense blocks to compress data structure
and row permutations to avoid unevenly distributed workloads. The authors
also proposed a model to predict matrix-dependent tuning parameters, such as
the block size. BELLPACK obtains performance improvements only on matri-
ces that have small dense block sub-structures, as those arising in applications
based on the finite-element method. Indeed, its drawback is the overhead intro-
duced by zero fill-in in the blocks and zero padding to let the number of blocks
per row be the same.

A blocked version of Sliced ELLPACK, called BSELLPACK, is discussed
in [92]. It presents a slightly lower overhead than BELLPACK, because it re-
quires fewer padding zeros.

The major drawback of formats such as Sliced ELLPACK and its variants,
BELLPACK and BiELL, is related to the preprocessing of the sparse matrix,
which uses computational resources and may involve a large memory overhead,
especially when the matrix has not a natural block structure.

Adaptive ELL (AdELL) [70] is an ELLPACK-based format proposed for
matrices with an irregular sparsity pattern. It pursues a self-adaptation goal
by exploiting the idea of adaptive warp-balancing, where the computation on
nonzero elements is distributed among balanced hardware-level blocks (warps).

23

Specifically, each warp can process from one to multiple rows, thus exploiting
the vectorized execution, and each row can have a different number of working
threads by following a best-fit heuristic policy where heavyweight rows are as-
signed to more threads. AdELL has been inspired by the idea first presented in
the Sliced ELLPACK format to partition the matrix in slices and to represent
each slice with a local ELLPACK structure. It presents a number of advantages:
it ensures load balance, does not require the tuning of any parameter and the
use of block-level synchronization primitives, and preserves cache locality for
the dense x vector.

The AdELL format has been extended by the same authors into the CoAd-
ELL format [71] by exploiting a lossless compression technique that targets
column indices and is based on delta encoding between consecutive nonzeros.
More recently, an advanced version of the AdELL format, called AdELL+, has
been proposed in [73]. In particular, it integrates complementary memory opti-
mization techniques into AdELL in a transparent way, reduces the preprocessing
cost through an improved adaptive warp-balancing heuristic with respect to that
of AdELL, and presents a novel online auto-tuning approach.

Since the JAD (or JDS) format can be considered as a generalization of
ELLPACK without the assumption on the fixed-length rows, we consider in this
context some works that proposed the JAD format and its variants for GPG-
PUs. JAD is a more general format than ELLPACK but it can still guarantee
coalesced memory accesses. However, the JAD kernel requires to preprocess the
matrix, because it first sorts the rows in non-increasing order of the number of
nonzero elements per row, then shifts all nonzero elements to the left.

The base JAD format for GPGPU has been suggested in [65, 20]. In both
works the matrix rows are first sorted in non-increasing order of the number
of nonzeros per row and then compressed. The JAD kernel presented by Li
and Saad [65] (whose code is available in the CUDA-ITSOL library) assigns one
thread per row to exploit fine-grained parallelism. However, thanks to the the
JAD format, the kernel does not suffer from the performance drawback of the
scalar CSR kernel in [13, 14] due to the noncontiguous memory access. JAD
can reduce the computational efforts and obtains a performance improvement
with respect to CSR and ELL, but its kernel may suffer from unused hardware
reservation [114].

Cao et al. [17] presented the ELLPACK-RP format, which combines ELLPACK-
R with JAD. The matrix is stored in the ELLPACK-RP format by first con-
structing the ELLPACK-R format and then permuting the rows by shifting the
longer rows upwards and the shorter ones downwards in decreasing order as in
JAD. However, ELLPACK-RP has been evaluated only on a limited set of matri-
ces without taking into account the preprocessing time and showed improvement
with respect to ELLPACK-R only when the matrix has a very irregular sparsity
pattern.

Kreutzer et al. [56] proposed the Padded Jagged Diagonals Storage (pJDS)
format, which is also based on ELLPACK-R. pJDS reduces the memory foot-
print of ELLPACK-R by first sorting the rows of the ELLPACK scheme accord-
ing to the number of nonzeros, then padding blocks of consecutive rows to the

24

longest row within the block. Such format maintains load coalescing while most
of the zero entries can be eliminated. Furthermore, with respect to BELLPACK
and ELLR-T, the pJDS format is suited for general unstructured matrices and
does not use any a priori knowledge about the matrix structure. There are also
no matrix dependent tuning parameters.

A variant of pJDS, called ELL-WARP, was recently presented in [105] for
finite element unstructured grids. It first sorts the rows by length, then arranges
rows into groups of warp size and pads accordingly; finally, it reorders the data
within each warp in a column-major coalesced pattern. Similarly to other for-
mats that employ reordering of values, the reordering overhead should be taken
into account as it is expensive with respect to the actual SpMV computation
time.

Ashari et al. [8] have recently proposed the Blocked Row-Column (BRC)
storage format (which has been integrated with PETSc but is not yet publicly
available). BRC is a a two-dimensional row-column blocked format, where row-
blocking of the matrix aims at reducing thread divergence and column-blocking
at improving load balance. We classify BRC has an ELLPACK variant because
it combines the row permutation (based on the number of nonzeros in each
row) of JDS and the padding mechanism of ELLPACK. BRC requires to set
two parameters (the number of rows in a block that maps to a warp and the
block size) that depend on the warp size and the matrix structure. Interestingly,
the authors also evaluated the preprocessing time needed to set up the matrix
in the BCR format, which turned out to be two orders of magnitude larger than
the SpMV time.

Besides the BiELL format, Zheng et al. [114] suggested also the Bisection
JAD (BiJAD) format, which exploits the same bisection technique of BiELL
to improve load balance. While BiELL sorts the rows only within each strip,
BiJAD sorts all the rows of the matrix in order to reduce the padding zeros.

The Transpose Jagged Diagonal (TJAD) storage format has been tailored
for GPGPUs in [1]. TJAD is inspired by JAD but reduces the storage space
used by JAD; specifically, TJAD sorts the columns rather than the rows ac-
cording to the number of nonzeros. The authors used registers to enhance data
reuse and proposed a blocked version of TJAD to allow computing from the
fast shared memory. TJAD achieves a significant performance improvement for
matrices that are neither highly uniform nor highly non-uniform in the number
of nonzeros in the rows.

In the context of the PSBLAS software [39, 19], we have implemented two
variations on the ELLPACK format. The first is quite similar to the base format,
except that it additionally stores a vector with the actual number of nonzero
elements per row. Each row is assigned to a set of threads which computes all
the associated operations and stores the result in the output vector. The set
comprises one or two threads depending on the average number of nonzeros per
row; this is somewhat similar to what is done in ELLPACK-R [96]; however, in
our implementation we do not need to change the data structure to reflect the
usage of more threads.

The second ELLPACK-derived format we proposed in [10] (all our code is

25

available in the PSBLAS library) is Hacked ELLPACK (HLL), which alleviates
one major issue of the ELLPACK format, that is, the amount of memory re-
quired by padding for sparse matrices in those cases where the maximum row
length is substantially larger than the average. To limit the padding overhead
we break the original matrix into groups of rows (called hacks), and then store
these groups as independent matrices in ELLPACK format; a very long row
only affects the memory size of the hack in which it appears. The groups can be
optionally arranged selecting rows in an arbitrary order; if the rows are sorted
by decreasing number of nonzeros we obtain essentially the JAgged Diagonals
format, whereas if each row makes up its own group we are back to CSR storage.
Threads within a hack will access consecutive rows of the data structure; hence
the size of the hack should be a multiple of the warp size to guarantee coalesced
memory accesses. The padding overhead is proportional to the number of rows
within the hack; therefore, the hack size should be kept as small as possible,
normally just one warp. Similarly to our ELLPACK implementation, we assign
one or two threads per row depending on the average row length.

Sorting the rows of the matrix based on rows’ length, like in the JAD format,
tends to reduce the amount of padding, since large rows will go together in the
same submatrix. However, it also entails the use of permutations in computing
the output vector, and therefore it does not necessarily improve overall perfor-
mance. The HLL format is similar to the Sliced ELLR-T format [34], where
however no provisions are made for an auxiliary ordering vector.

4.5 DIA Variants

DIA is not a general-purpose format and is only convenient for matrices with a
natural diagonal structure, often arising from the application of finite difference
stencils to regular grids. This format is efficient for memory bandwidth because
there is no indirection as in the COO, CSR, and JAD formats, as confirmed by
the results reported in [65] for diagonally structured matrices. However, DIA
can potentially waste storage and computational resources because it requires
zero padding for non-full diagonals in order to maintain the diagonal structure.
Moreover, while the DIA code is easily vectorized, it does not necessarily make
optimal use of the memory hierarchy. While processing each diagonal we are
updating entries in the output vector y, which is then accessed multiple times; if
y is too large to remain in the cache memory, the associated cache miss penalty
is paid multiple times and this may reduce overall performance.

Yuan et al. [113] presented two formats based on DIA, called DDD-NAIVE
(Naive Direct Dense Diagonal) and DDD-SPLIT (Split Direct Dense Diagonal).

Godwin et al. [40] proposed the Column Diagonal Storage (CDS) format for
block-diagonal sparse matrices that takes advantage of the diagonal structure
of matrices for stencil operations on structured grids. CDS minimizes wasted
space and maximizes memory coalescing across threads by storing the matrix
according to its block-diagonal structure.

We have designed the Hacked DIA (HDI) format [10] to limit the amount
of padding, by breaking the original matrix into equally sized groups of rows

26

(hacks), and then storing these groups as independent matrices in DIA format.
This approach is similar to that of HLL, and requires using an offset vector for
each submatrix. Again, similarly to HLL, the various submatrices are stacked
inside a linear array to improve memory management. The fact that the matrix
is accessed in slices also helps in reducing cache misses, especially regarding
accesses to the vector y.

4.6 Hybrid Variants

HYB is the best known hybrid format suitable for GPGPU and is most suitable
for matrices that do not have a regular structure. It represents the reference
format for most works that proposed novel sparse matrix formats and related
optimizations for GPGPUs, e.g., [11, 38, 76, 80, 83], including the present pa-
per. It was proposed by Bell and Garland in [13, 14], included in the cuSPARSE
library [82] and is a hybrid combination of ELLPACK and COO formats, where
the majority of matrix entries are stored in ELL. Specifically, HYB allocates the
first K nonzeros per row (zero padding rows that have less than K nonzeros) in
the ELLPACK portion, and stores the remaining nonzero elements in the COO
portion. The value for K is determined by the rule that at least one third of the
matrix rows contains K or more nonzero elements. The motivation for HYB
proposal is that ELLPACK and COO formats are suitable in slightly comple-
mentary situations: therefore, the idea is to jointly exploit the ELLPACK high
performance potential and the performance invariability of COO. The kernel
time of HYB improves significantly with good performance over a large collec-
tion of sparse matrices, however at the cost of high data organization, more
complex program logic, and memory transfer time.

BRO-HYB, an extension of the HYB format with compression, was proposed
by Tang et al. [95] in their already cited work. Similarly to HYB, it combines the
BRO-ELL and BRO-COO formats by dividing the matrix into BRO-ELL and
BRO-COO partitions with the same algorithm proposed by Bell and Garland.
The same authors proposed in [94] two new hybrid variants, called BRO-HYBR
and BRO-HYBR(S), with the goal to further reduce the memory-bandwidth
usage. Both the variants partition the matrix into BRO-ELL and BRO-CSR
components; BRO-HYBR(S) also sorts the rows according to their length.

The works in [75, 76, 111, 66] considered combinations of CSR and ELL-
PACK formats for storing the matrix.

Maringanti et al. [75] proposed a simple combination of the two formats,
motivated by the observation that the CSR format in the vector kernel version
(where one warp is assigned to each matrix row) performs well when the num-
ber of nonzero elements per row is sufficiently larger than the warp size [13].
Specifically, rows having a number of nonzero elements greater than warp size
are encoded in the CSR format, while the remaining ones in the ELLPACK
format.

The HEC format by Liu et al. [66] combines CSR and ELLPACK by storing
a part of the matrix in ELLPACK and the remaining one in CSR. The partition
is determined by a minimum problem, whose formulation requires to know the

27

relative performance of the ELL and CSR matrices thus needing preliminary
tests.

Matam and Khotapalli [76] proposed a data structure to store some rows
in CSR and the remaining in ELLPACK. They proposed a methodology that
analyzes the sparse matrix structure and chooses the right data structure to
represent it. Their methodology uses some threshold parameters (nonzero el-
ements per row, maximum number of elements per thread and per warp) and
attempts to balance the load amongst threads and also to identify the right kind
of format between CSR and ELLPACK, or a combination of both, to use for
storing the sparse matrix. Their hybrid combination of CSR and ELLPACK
obtains a performance improvement for the SpMV kernel of 25% on average
with respect to the HYB format. However, their approach presents some data
structure and operational space overhead.

Yang et al. [111] focused on sparse matrices used in graph mining applica-
tions, which have the peculiarity to represent large, power-law graphs. For such
power-law matrices, they proposed a composited storage scheme, called TILE-
COMPOSITE that combines the CSR and ELL formats. During a preprocessing
phase, the matrix is first divided into fixed width tiles by column index, then
in each tile the rows are ranked according to the number of nonzero elements
and partitioned into balanced workloads. If the length of the longest row in
the workload is greater than or equal to the number of rows in the workload,
then the CSR format is used, otherwise ELL is used. An automated parameter
tuning is also proposed to calculate the number of tiles and the partition strate-
gies for each tile. The drawback of this combined format is the sorting cost for
re-structuring the matrix.

Feng et al. [38] proposed the Segmented Hybrid ELL+CSR (SHEC), which
exploits the reduction of auxiliary data used to process the sparse matrix el-
ements that allows to improve the SpMV throughput and reduce the memory
footprint on the GPGPU. In SHEC the matrix is divided into several segments
according to the length of the matrix rows, and then a hybrid combination of
ELL and CSR processing pattern is chosen for each segment. In addition, the
GPGPU occupancy is taken into consideration to avoid unnecessary idleness of
computational resources.

The Cocktail Format by Su and Keutzer [92] takes advantages of different
matrix formats by combining them. It partitions the input sparse matrix into
several submatrices, each specialized for a given matrix format.

Some works have focused on the combination of the DIA sparse format
with other formats [110, 72] for matrices that exhibit a quasi-diagonal sparsity
pattern.

Maggioni et al. [72] proposed the combination of DIA with the ELLPACK
format to store the dense diagonals of the sparse matrix using the DIA format
(adding alignment padding if necessary) and the remaining elements of the
matrix using the ELLPACK format. This combination of ELLPACK and DIA
is useful for the Jacobi iteration because of the faster access to the elements on
the separate diagonal; however, it achieves a limited performance improvement
with respect to ELLPACK and only for those matrices having a relatively dense

28

diagonal band.
Yang et al. [110] proposed the HDC format, which is a hybrid of DIA and

CSR, to address the inefficiency of DIA in storing irregular diagonal matrices
and the imbalance of CSR in storing nonzero elements. The decision on whether
or not to store a diagonal by using either DIA or CSR is based on the number of
nonzero elements in that diagonal: if there are more nonzeros than a threshold,
the diagonal is stored in DIA, otherwise in CSR. However, the question of how
to properly set the threshold is not discussed in the paper.

For hybrid blocked storage formats, Monakov and Avetisyan [77] presented a
format based on a combination of BCOO and BCSR features (being BCOO the
classical blocked version of COO). Furthermore, nonzero elements not covered
by blocks are stored in the ELL format. To select the best block size, they
proposed both dynamic programming and a greedy heuristic. However, their
approach has large memory requirements because of the need to store additional
zero elements.

4.7 New GPGPU-specific Storage Formats

Neelima et al. [80] proposed a new format called Bit-Level Single Indexing
(BLSI) that aims to reduce both the data organization time and the memory
transfer time from CPU to GPGPU. BLSI uses only one array of size equal to
the number of nonzero elements to represent the indices in order to store them
by embedding the column information in the bits of row indices information.
BLSI reduces the combined time of data preprocessing and movement and it
is thus a good choice for a single or a limited number of SPMV computations.
However, it increases significantly the running time of the SPMV kernel with re-
spect to the HYB format; it is therefore not attractive for iterative solvers where
the same data structure is reused over multiple kernel invocations, amortizing
the conversion cost.

Sun et al. [93] proposed a new storage format for diagonal sparse matrices,
called Compressed Row Segment with Diagonal-pattern (CRSD), which alle-
viates the zero fill-in issue of the DIA format. The idea is to represent the
diagonal distribution by defining the diagonal pattern, which divides diagonals
into different groups, and to split the matrix into row segments. In each row
segment, nonzero elements on the diagonals of the same group are viewed as
the unit of storage and operation and are therefore stored contiguously.

4.8 Automated Tuning and Performance Optimization

In the previous sections, we have seen in the format-by-format analysis that a
number of SpMV optimizations previously used for other architectures [104, 103]
have been also applied to GPGPUs. They can be roughly classified into the three
categories of reorganizing for efficient parallelization, reducing memory traffic,
and orchestrating data movement, and include, among the others, fine-grain
parallelism, segmented scan, index compression, and register blocking [103].

29

However, a result in common with other architectures is that there is no sin-
gle winner implementation, but rather the best choice of sparse storage format
depends on the sparsity pattern of the matrices considered [103]. Therefore,
auto-tuning frameworks (i.e., for automated performance tuning) specific for
GPGPUs have been proposed to adjust at runtime the matrix format and pa-
rameters according to the input matrix characteristics (e.g., matrix size, number
of nonzeros, sparsity pattern) and/or the specific architecture. In this section
we briefly review them, together with techniques for performance optimizations
that do not depend on a specific storage format.

A model-based auto tuning framework designed to choose at runtime the
matrix-dependent parameters was presented by Choi et al. [22]. It is based on a
generic model of GPGPU execution time which is instantiated for SpMV with
off-line benchmarking data. However, the model is specific for the BELLPACK
and BCSR storage formats.

Li et al. [63] proposed SMAT, a sparse matrix-vector multiplication auto-
tuning system, to bridge the gap between specific optimizations and general-
purpose usage. SMAT presents a unified programming interface for different
storage formats: the user has to provide in input its matrix in CSR format and
SMAT automatically determines the optimal storage format and implementa-
tion on a given architecture. The auto-tuning strategy exploits a black-box ma-
chine learning model to train representative performance parameters extracted
from the sparse matrix pattern and architectural configuration.

A machine learning approach using classification trees to automatically select
the best sparse storage scheme among CSR, ELLPACK, COO, and ELL-COO
on the basis of input-dependent features on the sparse matrix has been also
presented in [90].

A heuristic-based auto-tuning framework for SpMV on GPGPUs has been
also proposed in [2]. Given a sparse matrix, their framework delivers a high
performance SpMV kernel which combines the use of the most effective storage
format and tuned parameters of the corresponding code targeting the underlying
GPGPU architecture.

There are also extensive efforts on performance models specific for the SpMV
application on GPGPUs [58, 45, 47, 64]. Kubota and Takahashi [58] proposed
an algorithm that automatically selects the optimal storage scheme.

Guo et al. [45] presented an integrated analytical and profile-based perfor-
mance modeling and optimization analysis tool to predict and optimize the
SpMV performance on GPGPUs. Their model allows to predict the execution
times of CSR, ELL, COO, and HYB kernels for a target sparse matrix. Their
goal is to find a storage format (single or a combination of multiple formats)
from those available in order to maximize performance improvement. However,
their analytical models do not consider in details the sparsity pattern of the
input matrix. Guo and Wang [47] also proposed an extension of the tool to
provide inter-architecture performance prediction for SpMV on NVIDIA GPU
architectures.

A probabilistic method of performance analysis and optimization for SpMV
on GPGPU has been recently proposed by Li et al. [64]. Differently from [45],

30

the proposed method analyzes the distribution pattern of nonzero elements in a
sparse matrix and defines a related probability mass function. Once the prob-
ability function for the target matrix is built, performance estimation formulas
for COO, CSR, ELL, and HYB storage formats can be established for the tar-
get matrix and the storage structures of these formats. The SpMV performance
using these formats is then estimated using the GPGPU hardware parameters
and finally the format that achieves the best performance is selected. The ad-
vantage of the approach lies in its being general, because it does not depend on
the GPGPU programming language and architecture.

Some works have focused on performance optimization of SpMV on GPG-
PUs exploiting some specific approach independently from the storage for-
mat [85, 43]. Pichel et al. [85] explored performance optimization using reorder-
ing techniques on different matrix storage formats. These techniques evaluate
the sparsity pattern of the matrix to find a feasible permutation of rows and
columns of the original matrix and aim to improve the effect of compression.
The problem with applying a reordering technique is that it changes the inherent
locality of the original matrix.

Grewe and Lockmotov [43] proposed an abstract, system-independent repre-
sentation language for sparse matrix formats, that allows a compiler to generate
efficient, system-specific SpMV code. The compiler supports several compila-
tion strategies to provide optimal memory accesses to the sparse matrix data
structures and the generated code provides similar and sometimes even better
performance compared to hand-written code. However, the automated tuning
of code can be seriously time consuming because it exhaustively evaluates the
configuration space.

Some efforts have been devoted to study SpMV on hybrid GPU/CPU plat-
forms [18, 51, 109, 74]. We discussed in [18] how design patterns for sparse
matrix computations and object-oriented techniques allow to achieve an effi-
cient utilization of a heterogeneous GPGPU/CPU platform; we also considered
static load balancing strategies for devising a suitable data decomposition on a
heterogeneous GPGPU/CPU platform.

Indarapu et al. [51] proposed heterogeneous algorithms for SpMV on a GPG-
PU/CPU heterogeneous platform. Their algorithms are based on work division
schemes that aim to match the right workload for the right device.

Yang et al. [109] have recently presented a partitioning strategy of sparse
matrices based on probabilistic modeling of nonzeros in a row. The advantages
of the proposed strategy lie in its generality and good adaptability for different
types of sparse matrices. They also developed a GPGPU/CPU hybrid parallel
computing model for SpMV in a heterogeneous computing platform.

Finally, in a more general context than sparse matrices, the MAGMA project [74]
aims at designing linear algebra algorithms and frameworks for hybrid multi-
core and multi-GPU systems. A general strategy is to assign small tasks to
multicores and large tasks to GPUs.

31

5 Experimental Evaluation

We have presented a number of different storage formats for the SpMV kernel
on GPGPU; it is now appropriate to see how well they perform in actual test
cases. To this end, we have elected to use:

• A subset of the formats reviewed, based on the availability of the software;

• A number of GPU models, with different architectural features;

• A set of test matrices, coming from different application fields and ex-
hibiting different patterns.

We first present in Section 5.1 the testing environments; in Section 5.2 we
then discuss the performance of the SpMV kernels using the throughput as per-
formance metric, and in Section 5.3 we evaluate the results against a roofline
model of attainable performance on the GPU computing platform. In Sec-
tion 5.4 we analyze the time and space overheads associated to the considered
subset of storage formats; finally, in Section 5.5 we summarize the analysis and
draw some guidelines.

5.1 Testing Environments

5.1.1 Sparse Storage Formats

The set of storage formats includes:

• Two CSR variants: the one originally published by [87] and currently
included in the NVIDIA cuSPARSE library, and the one published by [79];
they will be referred to by the names CSR and JSR, respectively;

• The HYBrid format from cuSPARSE [14, 82];

• The SELL-P format implemented in MAGMA 1.7.0 [74];

• The ELLPACK-like and Hacked ELLPACK formats from our group, in-
dicated with ELL and HLL, respectively [10];

• The Hacked Diagonal (HDI) format from our group [10];

In the tests regarding formats that employ hacks (i.e., HLL and HDI), the hack
size has been chosen equal to the size of one warp, so to minimize the padding
overhead; moreover, we have applied no reordering to the test matrices.

5.1.2 Test Matrices

The test matrices were taken mostly from the Sparse Matrix Collection at the
University of Florida (UFL) [30], with the addition of three matrices generated
from a model three-dimensional convection-diffusion PDE with finite difference
discretization.

32

Table 3: Sparse matrices used in the experiments and their features
Matrix name M NZ AVG MAX Description

NZR NZR
cant 62451 4007383 64.2 78

Structural analysis problems

olafu 16146 1015156 62.9 89
af 1 k101 503625 17550675 34.8 35
Cube Coup dt0 2164760 127206144 58.8 68
ML Laplace 377002 27689972 73.4 74
bcsstk17 10974 428650 39.1 150
mac econ fwd500 206500 1273389 6.2 44 Macroeconomic model
mhd4800a 4800 102252 21.3 33

Electromagnetism
cop20k A 121192 2624331 21.7 81
raefsky2 3242 294276 90.8 108

Computational fluid dynamics
problems

af23560 23560 484256 20.6 21
lung2 109460 492564 4.5 8
StocF-1465 1465137 21005389 14.3 189
PR02R 161070 8185136 50.8 92
RM07R 381689 37464962 98.2 295
FEM 3D thermal1 17880 430740 24.1 27

Thermal diffusion problems

FEM 3D thermal2 147900 3489300 23.6 27
thermal1 82654 574458 7.0 11
thermal2 1228045 8580313 7.0 11
thermomech TK 102158 711558 7.0 10
thermomech dK 204316 2846228 13.9 20
nlpkkt80 1062400 28192672 27.0 28

Nonlinear optimization
nlpkkt120 3542400 95117792 27.3 28
pde60 216000 1490400 6.9 7

Convection–diffusion PDE unit
cube, 7-point stencil.

pde80 512000 3545600 6.9 7
pde100 1000000 6940000 6.9 7
webbase-1M 1000005 3105536 3.1 4700

Graph matrices — web
connectivity, circuit simulation.

dc1 116835 766396 6.6 114190
amazon0302 262111 1234877 4.7 5
amazon0312 400727 3200440 8.0 10
roadNet-PA 1090920 3083796 2.8 9
roadNet-CA 1971281 5533214 2.8 12
web-Google 916428 5105039 5.6 456
wiki-Talk 2394385 5021410 2.1 100022

Table 3 summarizes the matrices characteristics; for each matrix, we report
the matrix size, the number of nonzero elements, the average and maximum
number of nonzeros per row. The sparse matrices we selected from the UFL
collection represent different kinds of real applications including structural anal-
ysis, economics, electromagnetism, computational fluid dynamics, thermal dif-
fusion, graph problems. The UFL collection has been previously used in most of
the works regarding SpMV on GPGPUs, among them [7, 11, 22, 38, 76, 78, 79].
The UFL collection subset we selected includes some large sparse matrices such
as Cube Coup dt0, StocF-1465, nlpkkt120 and webbase-1M, i.e., matrices hav-
ing more than a million rows and up to a hundred million nonzeros; moreover,
the optimization and graph matrices have a structure that is significantly differ-
ent from PDE discretization matrices. Since the irregular access pattern to the
GPGPU memory can significantly affect performance of GPGPU implementa-

33

tions when evaluating larger matrices [27], it is important to include large sparse
matrices and matrices with different sparsity patterns. Some of the test matri-
ces from graph problems, e.g., webbase-1M and wiki-Talk, exhibit a power-law
distribution in the number of nonzeros per row; since the formats we are testing
are row-oriented, a large difference between the average and maximum num-
ber of nonzeros per row marks difficult test cases in which performance suffers
significantly.

The model pdeXX sparse matrices arise from a three-dimensional convection-
diffusion PDE discretized with centered finite differences on the unit cube. This
scheme gives rise to a matrix with at most 7 nonzero elements per row: the
matrix size is expressed in terms of the length of the cube edge, so that the case
pde60 corresponds to a (603×603 = 216000×216000) matrix. We already used
this collection in [19].

5.1.3 Hardware and Software Platforms

The performance measurements were taken on four different platforms, whose
characteristics are reported in Table 4. Error-Correcting Code (ECC) was dis-
abled on the M2070, on this particular card it makes a substantial difference in
memory bandwidth. The experiments were run using the GCC compiler suite
and the CUDA programming toolkit; on all platforms we used GCC 4.8.3 and
CUDA 6.5, and all tests have been run in double precision.

Table 4: Test platforms characteristics
Platform 1 2 3 4

CPU Intel AMD Intel Intel

Xeon FX Xeon Core i7

E5645 8120 E5-2670 4820

GPU M2070 GTX 660 K20M K40M

Fermi Kepler Kepler Kepler

Multiprocessors 14 5 13 15

Cores 448 960 2496 2880

Clock (MHz) 1150 1033 706 745

DP peak (GFlop/s) 515.2 82.6 1170 1430

Bandwidth (GB/s) 150.3 144.2 208 288

Compute capability 2.0 3.0 3.5 3.5

To collect performance data we have mostly used the benchmark program
contained in our PSBLAS software; our GPU plugin provides wrappers for the
cuSPARSE formats as well as for our owns, thereby making it easy to test
multiple format variations. For the JSR format we have used the test program
provided by its authors; it must be noted that this has apparently been designed
to handle matrices coming from PDE discretizations, and it signaled with run-
time error messages that the graph matrices in many cases lack coefficients on
the main diagonal.

34

For the SELL-P format we have used the test program provided by the
MAGMA library. In the tables we report the performance obtained by using
blocksize 32 and alignment 4; we tested many other combinations, but this
proved to be quite good on average, either the best or very close to it.

We have also run some tests with the ELLR-T format from [97], with levels
of performance in the same range as our ELL variation(s); however the software
on the author’s website is available in binary format only for the CUDA 5.0
environment, hence it has not been included in the current data set.

As described in Section 4.6, the Hybrid format available in the NVIDIA
cuSPARSE library is documented to be a mixture of ELLPACK and COO. The
cuSPARSE library allows the user to control the partition of the input matrix
into an ELLPACK part and a COO part; for the purposes of this comparison
we always used the library default choice.

5.2 SpMV Performance

Our performance results are detailed in Tables 5-8 and in Figures 13(a) through
14(b). The entries in Table 8 highlighted with symbols are those used in the
performance model of Section 5.3.

As a general observation, it is rarely the case that the CSR and JSR formats
(the latter only on the Kepler cards) are the fastest option. Among the few such
cases are the PR02R, RM07R and raefsky2 matrices on the K40M (platform 4);
these are matrices with densely populated rows, having an average of 50, 98,
and 90 coefficients per row, respectively. The JSR code is sometimes faster than
the cuSPARSE CSR; this happens with the Cube Coup dt0 matrix, which has
on average 59 nonzeros per row, and cant and olafu matrices on the K40M.

On all platforms the ELL, HLL, and HYB formats are almost always quite
close in speed; the advantage goes either way and there is no clear winner.

For matrices arising from the discretization of PDEs, the ELLPACK-derived
formats (including HYB) are typically the best. When the ratio between MAXNZR
and AVGNZR is close to 1, ELL is the best choice, e.g., for ML Laplace and
FEM 3D thermal matrices because the padding overhead is sufficiently small.
As the ratio grows while still remaining within one order of magnitude (e.g.,
RM07R, bcsstk17, Cube Coup dt0, cop20k A), HLL and HYB are able to keep
the memory overhead under control and provide increasingly better performance
with respect to ELL. In the limit case of StocF-1465, the memory overhead is
so large that we are unable to employ the ELL format on any platform.

There are two main sets of exceptions to the above rules of thumb: the
pdeXX, FEM 3D and nlpkk matrices, and the graph matrices.

For the pdeXX matrices, the HYB, ELL and HLL formats are very close.
However, these matrices have an extremely regular structure along seven diago-
nals, making them good candidates for the HDI format; indeed, the HDI format
clearly outperforms all others on the pdeXX matrices. This is also true for
FEM 3D thermal2; if we look at the sparsity pattern of this matrix, as shown
in Figure 10, we see that most of the coefficients are clustered around the main
diagonal; moreover, the off-diagonal part is made up of short diagonal segments,

35

Table 5: Detailed performance on platform 1: M2070
Matrix Execution speed (GFLOPS)

CSR HDI ELL HLL HYB SELL-P
cant 10.0 18.8 17.5 16.9 16.3 13.3
olafu 9.5 10.2 14.0 15.9 13.5 11.9
af 1 k101 11.5 18.5 20.9 19.9 19.6 14.4
Cube Coup dt0 10.7 — 18.2 20.2 19.9 14.5
ML Laplace 12.4 20.3 21.6 21.4 18.8 14.8
bcsstk17 9.1 5.8 5.0 10.8 8.9 8.9
mac econ fwd500 7.2 1.5 2.8 5.1 7.0 3.7
mhd4800a 6.7 6.3 10.1 7.8 3.9 6.1
cop20k A 8.7 1.6 5.0 10.0 9.6 6.7
raefsky2 8.3 3.2 15.1 15.3 5.0 11.5
af23560 8.9 14.1 15.4 13.7 14.3 10.2
lung2 7.3 4.2 9.7 9.1 7.5 5.4
StocF-1465 9.5 3.1 — 14.0 13.4 —
PR02R 9.1 13.9 11.9 14.6 14.0 11.2
RM07R 11.1 7.4 7.2 12.4 12.6 8.3
FEM 3D thermal1 8.7 16.1 14.8 13.2 15.5 10.4
FEM 3D thermal2 10.3 21.2 17.0 15.5 16.4 12.0
thermal1 — — — — — —
thermal2 8.1 1.6 7.7 8.2 8.9 5.8
thermomech TK 5.7 0.9 3.9 4.2 5.4 —
thermomech dK 9.3 1.4 10.7 11.6 9.4 6.5
nlpkkt80 9.7 23.3 18.6 17.7 20.1 13.8
nlpkkt120 9.7 23.1 19.0 17.8 19.4 13.6
pde060 8.6 19.5 17.1 15.7 17.3 9.2
pde080 8.7 20.4 17.6 16.2 18.0 9.3
pde100 8.7 20.6 17.3 15.8 18.2 9.0
webbase-1M 5.4 0.6 — 2.7 8.7 2.9
dc1 2.5 — — — 7.3 —
amazon0302 6.4 0.8 4.1 4.0 5.3 3.0
amazon0312 6.2 0.8 3.7 3.7 4.5 3.8
roadNet-PA 5.7 1.6 5.3 6.9 8.0 3.8
roadNet-CA 5.7 1.7 4.2 6.9 8.3 —
web-Google 2.9 0.5 — 1.6 2.7 —
wiki-Talk 2.2 0.2 — 0.2 3.2 —

as shown in the enlarged plot on the right, therefore making the HDI format a
suitable choice. Similar considerations apply to nlpkkt80 and nlpkkt120.

The graph matrices are completely different; many of them, including webbase-
1M, dc1, web-Google, and wiki-Talk, have a power-law distribution of entries;
webbase-1M and web-Google are web connectivity matrices, whereas dc1 is a
connectivity matrix for a circuit simulation. The histograms of row lengths for
webbase-1M and wiki-Talk are shown in Figure 11; the range of both x and y
axes has been clipped to improve the readability of the graph. By contrast, the
roadNet matrices describe the road networks in the states of Pennsylvania and
California respectively, and they do not exhibit the same power-law distribution.
The sparsity pattern of the roadNet matrices is very scattered and irregular (see
Figure 12) and this affects the performance because of poor locality of memory
accesses to the x vector.

36

Table 6: Detailed performance on platform 2: GTX660
Matrix Execution speed (GFLOPS)

CSR JSR HDI ELL HLL HYB
cant 12.9 8.4 16.4 15.3 16.0 18.1
olafu 11.4 8.6 10.3 12.4 14.8 13.7
af 1 k101 14.7 5.1 16.4 11.0 — 21.8
Cube Coup dt0 13.8 8.0 — 11.2 14.5 21.8
ML Laplace 19.7 9.8 18.1 19.2 19.1 21.9
bcsstk17 9.1 5.8 5.8 4.8 11.7 7.6
mac econ fwd500 7.3 3.8 1.3 2.2 4.6 8.2
mhd4800a 5.4 3.8 6.6 9.0 7.3 3.4
cop20k A 10.9 3.8 1.4 4.7 9.7 13.9
raefsky2 10.6 8.8 3.4 10.9 14.8 6.1
af23560 10.3 3.9 13.0 14.9 13.7 19.4
lung2 7.0 3.8 3.7 7.4 7.9 7.0
StocF-1465 11.7 5.0 — — 12.9 17.7
PR02R 13.5 7.2 12.5 10.6 13.5 16.1
RM07R 17.5 9.0 5.3 6.5 11.5 14.6
FEM 3D thermal1 9.7 4.5 15.3 14.2 13.1 17.9
FEM 3D thermal2 13.9 4.5 18.9 15.4 14.3 19.6
thermal1 9.8 5.1 1.6 7.1 7.5 9.5
thermal2 12.4 4.9 1.1 5.4 5.2 12.0
thermomech TK 9.3 3.4 0.8 4.1 4.2 8.8
thermomech dK 9.5 5.2 1.1 8.7 10.7 15.1
nlpkkt80 14.3 — 20.0 16.6 16.2 21.6
nlpkkt120 14.6 — — — — 21.1
pde060 11.9 5.6 19.6 15.4 14.4 19.2
pde080 12.8 5.6 20.2 15.6 14.0 19.3
pde100 12.7 5.6 18.2 14.2 13.4 19.2
webbase-1M 5.0 3.9 0.6 — 1.5 9.5
dc1 — 0.3 — 0.1 0.1 —
amazon0302 7.6 — — 3.6 3.5 11.3
amazon0312 6.3 — — 3.0 3.0 7.7
roadNet-PA 6.6 — — 4.4 6.2 8.8
roadNet-CA 6.7 — — 3.5 6.3 8.9
web-Google 2.9 — — — 1.5 3.3
wiki-Talk 0.4 — — — 0.2 3.5

The difference in distribution of nonzeros per row between roadNet-CA and
webbase-1M is not immediately apparent if we only look at the sparsity pattern,
as shown in Figure 12. The webbase-1M matrix has an average of 3.1 nonze-
ros per row, and 915506 out of 1000005 rows have up to 3 nonzeros. Of the
remaining rows, 51087 have more than 4 entries, 55 rows have more than 1000
nonzeros, with the largest row having 4700 entries, and the next largest 3710.
DC1 has an average of 6.6 nonzeros per row, and 98705 out of 116835 of its rows
have up to 7 nonzeros. All rows but two have up to 288 nonzeros; however the
two largest rows have 47193 and 114190 nonzeros respectively, i.e., one row is
almost full.

Thus, for power-law matrices there are a few scattered rows that are much
longer than all the others, and therefore the ELL and HLL schemes suffer be-
cause they assign one thread per row (indeed, ELL cannot be used due to
excessive memory footprint); the threads having long rows take a long time to

37

(a) FEM 3D thermal2 (b) ML Laplace

Figure 9: Row length histograms

(a) General (b) Off-diagonal detail

Figure 10: Sparsity pattern of FEM 3D thermal2

(a) webbase-1M (b) wiki-Talk

Figure 11: Row length histograms

38

Table 7: Detailed performance on platform 3: K20M
Matrix Execution speed (GFLOPS)

CSR JSR HDI ELL HLL HYB SELL-P
cant 13.3 16.7 20.3 19.2 20.1 18.2 19.6
olafu 12.7 15.6 7.4 15.9 16.8 13.7 17.4
af 1 k101 15.2 11.0 19.7 22.3 22.5 21.8 21.7
Cube Coup dt0 13.8 15.9 — 19.3 22.4 21.8 21.9
ML Laplace 19.9 18.2 21.9 23.3 23.0 21.9 22.3
bcsstk17 11.4 11.3 3.1 5.9 11.3 7.7 13.0
mac econ fwd500 7.7 7.8 1.6 3.2 6.6 8.2 5.5
mhd4800a 10.1 7.2 0.7 8.3 8.9 3.4 7.8
cop20k A 11.5 8.7 1.8 6.0 15.1 13.9 11.8
raefsky2 15.3 14.8 2.1 13.8 13.7 6.1 14.9
af23560 12.8 8.4 3.5 19.8 15.2 19.4 14.9
lung2 8.1 7.2 3.6 10.8 8.7 7.0 8.6
StocF-1465 11.7 10.6 3.4 — 16.1 17.7 13.3
PR02R 13.7 15.1 14.9 12.5 16.5 16.1 16.6
RM07R 17.6 19.0 8.2 7.9 15.3 14.6 12.3
FEM 3D thermal1 12.3 9.4 3.1 18.4 16.0 17.9 14.6
FEM 3D thermal2 14.4 9.9 23.3 19.3 18.6 19.7 16.9
thermal1 11.5 9.7 1.9 12.0 12.5 9.6 9.5
thermal2 12.5 10.1 1.8 12.1 12.8 12.0 9.9
thermomech TK 10.6 9.5 1.2 11.7 11.7 9.0 —
thermomech dK 9.7 10.6 1.5 13.0 14.2 15.1 11.8
nlpkkt80 14.4 — 25.5 21.1 21.2 21.6 20.0
nlpkkt120 14.6 — 25.8 20.8 20.7 21.1 20.1
pde060 12.8 11.1 10.9 19.1 18.1 19.1 14.1
pde080 13.2 11.3 24.8 19.5 18.6 19.4 14.0
pde100 13.0 11.3 25.8 19.4 18.6 19.2 14.4
webbase-1M 5.0 7.3 0.5 — 2.5 9.5 6.1
dc1 0.1 — — — — 7.7 —
amazon0302 8.0 — 1.0 11.1 9.4 11.4 6.4
amazon0312 6.4 — 0.9 7.6 6.8 7.7 6.8
roadNet-PA 6.8 — 1.8 6.2 9.8 8.8 6.8
roadNet-CA 6.8 — 1.8 4.7 9.6 8.9 —
web-Google 2.9 — 0.5 — 2.3 3.3 —
wiki-Talk 0.4 — 0.2 — 0.2 3.5 —

complete and tie up their warps. The HYB format suffers somewhat less, be-
cause it can exploit multiple threads in the COO part; this is helped on the
Kepler architecture by the fact that the atomic operations are much faster than
in previous architectures. Still, the overall performance is much less than for
most other matrices, and a proper design for this kind of sparsity pattern would
have to employ other techniques. Some efforts that address the peculiarities
of power-law matrices are the CSR-based ACSR format in [7] and the hybrid
TILE-COMPOSITE format in [111], that we described in Sections 4.2 and 4.6,
respectively; graph techniques may also be employed to improve communication
patterns [59].

A graphical comparison among the formats is depicted in Figures 13(a)
through 14(b) for platforms 1 and 4 using the performance profiles proposed
in [32]. The performance profile is a normalized cumulative distribution of per-
formance; adapting the definitions in [32] to our present situation, we define

39

Table 8: Detailed performance on platform 4: K40M
Matrix Execution speed (GFLOPS)

CSR JSR HDI ELL HLL HYB SELL-P
cant 14.7 19.7 24.8 23.8 24.0 20.6 23.3
olafu 14.0 18.4 9.0 19.2 19.6 15.7 20.4
af 1 k101 17.3 12.5 24.4 28.8 28.1 27.0 26.8
Cube Coup dt0 15.4 18.8 — 24.9 28.1 27.3 26.8
ML Laplace 23.4 21.8 26.7 ◦29.5 28.6 27.1 27.5
bcsstk17 12.8 12.8 3.8 7.5 12.8 8.6 13.2
mac econ fwd500 9.1 8.9 1.9 3.8 7.7 9.8 6.0
mhd4800a 11.7 8.3 0.9 11.0 10.2 4.0 8.8
cop20k A 13.5 10.2 2.1 7.5 18.9 16.2 13.9
raefsky2 17.4 17.1 2.6 15.9 15.2 6.7 16.8
af23560 14.8 9.5 4.3 20.9 21.2 23.8 17.5
lung2 9.5 8.5 4.4 12.3 11.0 8.3 10.6
StocF-1465 13.2 12.2 4.2 — 20.2 22.2 16.3
PR02R 15.3 17.3 17.8 16.5 20.2 20.0 17.4
RM07R 20.8 22.4 9.8 9.9 18.6 17.7 12.8
FEM 3D thermal1 14.2 10.8 3.8 20.6 18.3 21.3 17.2
FEM 3D thermal2 16.9 11.5 28.2 24.1 23.1 24.6 21.8
thermal1 13.2 11.3 2.1 11.4 15.9 11.0 11.5
thermal2 14.6 11.9 2.2 � 11.8 16.0 14.3 12.0
thermomech TK 12.3 11.3 1.4 8.2 14.3 10.1 —
thermomech dK 11.4 12.5 1.8 16.7 19.2 18.7 13.7
nlpkkt80 16.9 — 31.2 26.7 26.9 27.2 26.0
nlpkkt120 16.9 — 32.3 26.2 26.1 26.9 25.0
pde060 15.3 13.1 13.3 23.0 22.4 23.9 18.0
pde080 15.8 13.4 29.8 23.7 23.2 24.5 18.8
pde100 16.1 13.5 30.8 23.7 23.2 24.4 19.2
webbase-1M 5.0 7.8 0.5 — 2.6 11.1 7.4
dc1 0.1 0.2 — — — 8.7 —
amazon0302 9.6 — 1.2 9.3 12.0 14.5 7.5
amazon0312 7.9 — 1.1 8.0 8.4 10.0 9.2
roadNet-PA 7.6 — 2.1 7.4 12.1 10.6 9.4
roadNet-CA 7.6 — 2.2 5.8 12.0 10.5 —
web-Google 3.3 — 0.7 — ? 2.6 3.9 2.7
wiki-Talk 0.4 — 0.2 — 0.2 3.6 —

Sf,m as the speed attained by using format f ∈ F on matrix m ∈ M, and the
performance ratio

rf,m =
max{Sf,m : f ∈ F}

Sf,m
.

We also choose a value rX ≥ rf,m for all possible formats and matrices, and we
assign this ratio to those cases where a format is unable to handle a matrix (e.g.,
due to memory usage). Denoting by nM the size of the setM, the performance
profile is then defined as

ρf (τ) =
1

nM
size {m ∈M : rf,m ≤ τ} ,

that is, the cumulative distribution of the probability that for format f the ratio
rf,m is within a factor τ of the best possible value. If ρf (τ) levels asymptotically

40

(a) roadNet-CA (b) webbase-1M

Figure 12: Sparsity patterns

at less than 1, it means that there are some matrices that the format is unable to
handle; thus, a curve that is “above” another one means that the corresponding
format is “generally better” than the other. Note that the value ρf (1) is the
probability that format f is the best one for some matrix in the test set.

With these definitions in mind, we can observe that:

• The curves for all formats start with ρf (1) > 0, which means that all
formats are best for some matrix;

• On both platforms, the HYB and CSR formats level at probability 1,
which means that they can handle all test cases; this is also true of HLL
on the K40M but not on the M2070, due to the memory footprint;

• From the zoomed view in Figures 13(b) and 14(b) the HYB and HLL
formats have the fastest growth, which means that they are very good
“general purpose” formats; on the M2070, HYB is above HLL, whereas
on the K40M they are essentially equivalent;

• The CSR format curve has a much slower growth, but in the end it handles
all cases, so it is a good default choice if we need to handle many different
patterns in a reliable, if possibly suboptimal, way;

• SELL-P is also behaving effectively on the K40 but much less so on the
M2070;

• JSR is hampered by the fact, already noted before, that the test program
does not handle well the graph matrices;

• The curve for HDIA falls significantly below the others, confirming that
it is a very specialized storage format, and should only be used in cases
that are well suited to its structure.

41

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20

C
u

m
u

la
ti
v
e

 p
e

rf
o

rm
a

n
c
e

 r
a

ti
o

Subset of test cases

HYB
HLL
ELL

CSR
HDIAG

SELL-P

(a) Full view

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

C
u

m
u

la
ti
v
e

 p
e

rf
o

rm
a

n
c
e

 r
a

ti
o

Subset of test cases

HYB
HLL
ELL

CSR
HDIAG

SELL-P

(b) Detailed view

Figure 13: Performance profile on platform 1: M2070

42

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20

C
u

m
u

la
ti
v
e

 p
e

rf
o

rm
a

n
c
e

 r
a

ti
o

Subset of test cases

HYB
HLL
ELL

CSR
HDIAG

SELL-P
JSR

(a) Full view

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

C
u

m
u

la
ti
v
e

 p
e

rf
o

rm
a

n
c
e

 r
a

ti
o

Subset of test cases

HYB
HLL
ELL

CSR
HDIAG

SELL-P
JSR

(b) Detailed view

Figure 14: Performance profile on platform 4: K40M

43

5.3 Roofline Models

Figure 15: Roofline model of platform 4: K40M

How good are the performance numbers we have just discussed?
To enable an evaluation of the efficiency of the SpMV implementations we

use the roofline model [102] to compute a realistic upper bound on the attainable
performance; in Figure 15 we show the relevant graph for the K40M, that is,
platform 4, with three matrix/format pairs highlighted (see below).

Global memory bandwidth takes a major role in SpMV performance because
of its low arithmetic intensity, which is the ratio between the number of opera-
tions and the amount of memory being accessed. In the SpMV routine y ← Ax,
the number of arithmetic operations on floating point values is 2NZ−M , while
the amount of memory being accessed, for double precision routines, is at least
8(NZ + M + N) bytes. For a square matrix with NZ � M , this ratio be-
comes 1/4; this also represents an upper bound for the arithmetic intensity of
the SpMV routine applied to any general-purpose matrix, since it would never
execute more than 2NZ operations and it would never access less than 8NZ
bytes. A refined estimate for the arithmetic intensity can be obtained by ob-
serving that most formats explicitly store one index per coefficient; therefore
the memory is at least 12NZ + 8(M +N), and the ratio becomes 1/6.

As we can see from Figure 15, the main performance bottleneck of SpMV
is clearly due to memory bandwidth: the throughput of the ALUs cannot be
fully exploited, independently of the quality of the implementation. A realistic
estimate for peak throughput is obtained by multiplying the arithmetic intensity
by the bandwidth, therefore a reasonable value would be 1/6|BW | (flops/sec).
Considering for the K40M the sustained bandwidth measured in [5] at 190GB/s,
this gives a best possible performance of 32 GFLOPS.

There are other constraints, such as scattered accesses and work imbalance,

44

that may enter into our considerations:

Single MP DP peak This is the arithmetic throughput in double precision
when the distribution of work is such that only one of the MultiProcessors
in the device is active. This may happen if one block of threads has much
more work to perform than the others, or equivalently, when there is a
significant inter-block load imbalance. For the K40M, this value is 95
GFLOPS;

Idle threads DP peak This is the throughput in the case where in each warp
only one thread out of 32 is active, or equivalently when there is significant
intra-warp load imbalance; for the K40M this value is 45 GFLOPS;

Idle-Single MP DP peak This is the throughput when inter-block, intra-
block and intra-warp imbalance all occur; in this case, the peak throughput
is that of a single ALU, at about 3 GFLOPS.

These bounds are relevant for the power-law test matrices, where a few rows
are much more populated than the average.

The three highlighted points are located using the measurements in Tables 8
and 9:

◦ ML Laplace with ELL;

� thermal2 with ELL;

? web-Google with HLL.

For ML Laplace we see that we are running very close to the maximum possible
performance; thermal2 has a much heavier footprint, but it is also achieving a
somewhat lower effective bandwidth. Finally, web-Google has a power-law data
distribution, therefore its performance is close to the Idle-Single MP/DP peak.

5.4 SpMV Overheads

We now focus on space and time overheads that may affect the overall per-
formance of the application using the SpMV kernel. We first analyze the ma-
trix structure memory footprint of the considered formats and then discuss the
conversion (transformation) overhead. These additional evaluation criteria are
sometimes neglected by authors presenting a new format; as noted in [60], they
are necessary to make a fully informed choice in the selection of a suitable for-
mat taking into account the overall application performance, not relying solely
on the SpMV throughput.

In Table 9 we report the memory footprint of the various storage formats,
measured in bytes per nonzero element. The entries highlighted with symbols
are those used in the performance model of Sec. 5.3. As explained in [19], in
our library implementation we have a set of objects that have a dual storage,
on the CPU side and on the GPU side; the two are mirror images, and we only
report the memory footprint of one image.

45

Table 9: Memory footprint (Bytes/nonzero)
Matrix name CSR HDI ELL HLL
cant 12.06 18.39 14.71 13.75
olafu 12.06 25.26 17.13 14.11
af 1 k101 12.11 19.62 12.28 12.28
Cube Coup dt0 12.07 — 14.02 12.41
ML Laplace 12.05 17.81 ◦12.20 12.19
bcsstk17 12.10 41.88 46.30 16.15
mac econ fwd500 12.65 239.24 86.93 44.96
mhd4800a 12.19 32.67 18.96 18.96
cop20k A 12.18 214.40 45.27 14.66
raefsky2 12.04 27.26 14.46 12.87
af23560 12.19 19.23 12.66 12.62
lung2 12.89 74.82 23.11 21.68
StocF-1465 12.28 112.93 — 15.09
PR02R 12.08 25.73 21.88 15.79
RM07R 12.04 47.56 36.15 21.89
FEM 3D thermal1 12.17 14.61 13.79 13.79
FEM 3D thermal2 12.17 15.06 14.07 14.08
thermal1 12.58 193.12 20.14 16.06
thermal2 12.57 208.28 �20.04 15.97
thermomech TK 12.57 325.60 18.38 15.35
thermomech dK 12.29 244.87 17.80 14.45
nlpkkt80 12.15 14.24 12.73 12.46
nlpkkt120 12.15 13.76 12.58 12.40
pde060 12.58 12.10 13.33 13.26
pde080 12.58 12.07 13.29 13.23
pde100 12.58 12.06 13.26 13.21
webbase-1M 13.29 204.68 — 40.60
dc1 12.61 236.70 — 80.37
amazon0302 12.85 331.24 14.43 14.46
amazon0312 12.50 318.29 16.03 15.81
roadNet-PA 13.42 217.11 41.04 20.67
roadNet-CA 13.43 206.98 54.15 20.74
web-Google 12.72 383.95 — ? 52.05
wiki-Talk 13.91 376.24 — 166.96

The HYB format is opaque, and there is no API to retrieve its actual memory
footprint, hence it is not listed in the table; moreover, since cuSPARSE provides
a conversion routine from CSR, the CPU-side of HYB is stored in CSR.

Considering the amount of memory employed by the various storage for-
mats, we see that in many cases HLL has a footprint that is quite close to that
of CSR; this was indeed one of the design goals of HLL. For some matrices the
ELL storage format is essentially equivalent to HLL, because the maximum and
average row lengths are very close; this is true for instance of the af 1 k101 ma-
trix. The pdeXX model matrices also have a very regular structure and similar
memory footprint achieved by ELL, HLL, and CSR; however, these matrices
also have a native diagonal structure that makes them natural candidates for
HDI. Matrices without a natural (piecewise) diagonal structure have excessive
memory overheads when stored in HDI.

The conversion of the input matrix from a basic format into a more sophis-

46

ticated representation introduces a preprocessing time that can be quite signifi-
cant, even two orders of magnitude higher than the time needed for performing
the SpMV. While this conversion overhead is usually amortized for applications
such as iterative linear solvers that reuse the same sparse matrix over many in-
vocations of the SpMV operator, it can offset the performance benefits of using
the alternate format when the structure of the sparse matrix changes quite fre-
quently (e.g., in graph applications) or a small number of iterations are needed
in a solver. It is therefore very difficult to give general rules, and even to perform
meaningful comparisons.

To ground our discussion with a concrete implementation, we have chosen
to measure conversion overhead in the framework of our PSBLAS library. Of
course we do not claim to cover all conceivable conversion strategies and im-
plementations, and the reader should be aware that any conversion evaluation
would be subject to change whenever different algorithms or different applica-
tion contexts are involved.

As already mentioned, in our library we normally have a copy of data on
the host side and on the device side; this means that the default way to convert
from one format to another is to employ the CPU side conversion and then
transfer the data to the GPU. This is not as bad as it sounds; indeed, some
conversion algorithms require the use of auxiliary data structures that are not
easily implemented on the device side. Moreover, if we are performing the
conversion on the device, at some point we will have redundant copies of the
data in the device memory; since the GPU does not have virtual memory, this
can be a problem. As an example, in [26] we have an application where the
matrices are built at the first time step and then at each time step we perform
partial updates of the data structures on the device side, without regenerating
the entire matrices.

In the present set of tests, we have matrices that are read by a benchmark
program from file into the host main memory, and then have to be transferred
in the device memory; therefore, data have to travel in any case from host
to device. Moreover, to have a meaningful comparison among the conversion
algorithms, we have to define a common initial state for the data structure.

We assume as our starting point a COO representation on the host (CPU)
side with entries already sorted in row-major order. This reference format has
been chosen because, as described in [39, 19], the COO representation is the
most flexible when it comes to building the matrix, since the coefficients may be
added in an arbitrary order, thus allowing the most freedom to the application
programmer. Since our measurements are geared towards row-oriented formats,
we apply a minimal preprocessing so that all format conversions start from the
COO data already sorted in row-major order. Excluding the initial sorting phase
from the timings reflects the fact that the test matrices come from very diverse
applications, and each of them may well have a very different preferred setup
order; including the sorting time we would be mixing completely different factors
into our measurements. On the other hand, this means that our conversion times
include the transfer of data from the host to the device over the PCI bus.

A sample of conversion timing data is reported in Table 10; all data have

47

been collected on platform 4 (Intel Core i7-4820, K40M). We explicitly note the
following considerations:

• Conversion to CSR from an already sorted COO is extremely fast, since
it only involves counting the entries in each row and applying a scan
primitive to compute the offsets;

• Therefore, CSR conversion is the baseline for device-side, since it involves
very little time beyond the absolute minimum needed to transfer the co-
efficient data from host to device memory across the PCI bus;

• Conversion to HYB is implemented by having a CSR format on the host,
copying its data to the device, invoking the cuSPARSE conversion to HYB,
and then releasing the temporary CSR data;

• For both ELL and HLL we have implemented the default CPU side con-
version as well as methods split between the CPU and the GPU; the latter
are the ones whose times are reported in the tables. Some preprocessing
(essentially, counting offsets and maximum row occupancy) is performed
on the CPU, then the coefficients and auxiliary data are copied onto the
GPU where a CUDA kernel uses them to allocate and populate the EL-
L/HLL data structure;

• The HDI conversion at this time is only implemented on the host; the
resulting data structure is then copied on the device side.

To present the timing data we first give the absolute timings measured in sec-
onds; we then report the ratio of the conversion time to a single matrix-vector
product to measure the conversion overhead (rounded to the next largest in-
teger). Finally, we show the break-even point with respect to CSR, i.e., the
number of iterations for which the accumulated time plus conversion time is
shorter than with CSR. In some cases the CSR format is faster, and therefore
the break-even is never attained. The values for HDI are quite large because the
preprocessing takes place on the CPU side. These numbers should be treated
carefully because they include the time it takes to transfer data from host to
device; if the matrix can be reused and/or updated on the device, this would
be reflected in a lower overhead.

The ELL, HLL, and HYB formats are almost always quite close in overhead,
meaning that their conversion algorithms have a similar efficiency. Note that
measuring the overhead in number of SpMV invocations, albeit quite natural
and realistic, has the side effect of favoring CSR because its SpMV speed is
usually lower than the others, hence the same conversion time is offset by a
smaller number of iterations. Again, as in the speed measurements, the largest
differences appear for the graph matrices.

5.5 Lessons Learned

The performance data discussed in this section allow us to state some rules of
thumb:

48

• It is important to consider the conversion overhead: if the matrix (struc-
ture) is only used for a few products, it does not pay off to search for
sophisticated data structures, CSR suffices. Having the same structure
but different coefficients may call for a specialized coefficient update func-
tionality, but the payoff is highly application dependent;

• It is possible to apply a global renumbering of the equations to minimize
the matrix bandwidth; this may significantly affect the cache access pat-
terns, but we do not discuss the issue in this paper for space reasons;

• Reordering only the rows of the matrix, as necessary in some formats (e.g.
JAD), also entails an overhead because we have to reshuffle, at some point,
either the output or the input vectors;

• The memory footprint can be a big problem, even for some formats like
HLL; however:

• If the matrix comes from a PDE discretization, one should certainly try an
ELLPACK-like format first, depending on the memory available, unless:

• If the matrix not only comes from a PDE, but also has a piecewise diagonal
structure, then HDI is probably a very good idea;

• If the matrix comes from a graph problem, and has a power-law distribu-
tion in the number of entries, then the only option among the ones con-
sidered here is HYB, but even HYB is not very satisfactory; in this case,
it may be appropriate to investigate more specialized formats [7, 111].

6 Conclusions

We presented a survey on the multiplication of a sparse matrix by a dense
vector on GPGPUs, classifying and reviewing 71 storage formats that have
been proposed in literature for the efficient implementation of this fundamental
building block for numerous applications.

The importance of SpMV is testified not only by the large number of works
we surveyed, but also by the continuously increasing number of publications
that appear on the topic: during the review process of this paper we included
18 new publications. We evaluated the performance of a significant subset of
the available storage formats considering different test matrices and GPGPU
platforms. We considered multi-dimensional evaluation criteria, focusing not
only the attainable SpMV throughput in FLOPS but also analyzing the matrix
structure memory footprint and conversion overhead that may affect the overall
performance of the application using the SpMV kernel.

Putting together the survey analysis and our own experience on the topic,
we provide some possible directions for future work as well as some suggestions
for authors that present their formats.

49

• To facilitate the performance comparison among different formats, we sug-
gest to use normalized metrics, as we did in Section 5.4; some relevant
proposals have been put forward in [60];

• Whenever allowed by the licensing, we would appreciate more authors
to publish their implementation code. As reported in Section 4, authors
publicly providing their implementation codes are in the minority (and
sometimes the URL is not supplied in the paper): this complicates the
task of providing a comprehensive performance comparison. Furthermore,
even when the implementation code is available, it is not necessarily easy
to integrate into existing software because of either lack of simple APIs
or even source code, thus requiring a non negligible effort. For our part,
our software is freely available at the URL http://www.ce.uniroma2.it/

psblas and has been designed to make it as easy as possible to interface
with.

• The ever increasing platform heterogeneity poses interesting research chal-
lenges to deal with. In the context of SpMV, possible approaches that can
be explored to face heterogeneity include: (1) the definition of a single
cross-platform storage format, as the CSR5 one for SIMD units presented
in [67]; (2) the adoption of object-oriented design patterns (in particular
the State pattern) that allow to switch among different storage formats
at runtime, as proposed in [19]; (3) the study of partitioning strategies
that aim to properly balance the load in hybrid GPU/CPU platforms, as
presented in few already cited works [18, 51, 109].

• Specific sparsity patterns may require the adoption of ad-hoc storage for-
mats for efficient computation: this is the case of matrices with block
entries coming from PDE problems as well as large matrices with power-
law distribution used by graph algorithms for big data analytics. Only
few works have been devoted to this issue up to now.

• We have not touched on the problem of formats for storing sparse matrices
on file, nor on the related issue of checkpointing in the context of massively
parallel applications, see e.g., [61].

In conclusion, let us note that sparse matrices remain a central, vibrant and
challenging research topic today as they have been in the past decades, and we
expect to see many more developments in the path towards ever more powerful
computing platforms.

Acknowledgements

We wish to thank the Associate Editor and the anonymous referees, whose
insightful comments have been instrumental in improving the quality of this
paper.

50

We gratefully acknowledge the support received from CINECA for project
IsC14
HyPSBLAS, under the ISCRA grant programme for 2014, and from Amazon
with the AWS in Education grant programme 2014; this work was also partly
supported by INdAM. We wish to thank Dr. John Linford of Paratools Inc.
and Dr. Pasqua D’Ambra of CNR Italy, for their help in getting access to some
of the test platforms.

We also acknowledge Dr. Giles for having informed us know that their code
in [87] is now part of NVIDIA’s cuSPARSE library and Dr. Mukunoki for having
provided us their code in [79].

51

Table 10: Conversion overhead
Conversion time (seconds)

Matrix name CSR HDI ELL HLL HYB
Cube Coup dt0 0.411 — 0.588 0.585 0.592
ML Laplace 0.092 0.384 0.131 0.131 0.131
cop20k A 0.009 0.346 0.015 0.013 0.015
FEM 3D thermal2 0.011 0.042 0.016 0.016 0.017
thermal2 0.027 1.008 0.036 0.034 0.041
thermomech TK 0.003 0.131 0.004 0.004 0.005
nlpkkt80 0.090 0.327 0.126 0.125 0.129
pde100 0.022 0.079 0.028 0.028 0.031
webbase-1M 0.011 0.326 — 0.024 0.030
dc1 0.003 0.132 — 0.166 0.095
amazon0302 0.005 0.227 0.006 0.006 0.007
roadNet-CA 0.019 0.618 0.030 0.026 0.037
web-Google 0.017 1.239 — 0.039 0.033
wiki-Talk 0.022 1.475 — 0.303 0.117

Conversion time (Number of SpMV)
Matrix name CSR HDI ELL HLL HYB
Cube Coup dt0 25 — 58 65 64
ML Laplace 39 186 70 68 65
cop20k A 23 138 21 47 46
FEM 3D thermal2 28 169 57 55 59
thermal2 23 127 26 33 35
thermomech TK 25 125 23 39 34
nlpkkt80 27 179 59 59 62
pde100 25 176 48 47 56
webbase-1M 10 25 — 11 54
dc1 1 3 — 4 537
amazon0302 18 111 26 32 44
roadNet-CA 14 123 16 28 36
web-Google 6 84 — 10 13
wiki-Talk 1 24 — 7 43

Conversion time (break-even point)
Matrix name CSR HDI ELL HLL HYB
Cube Coup dt0 0 — 28 24 26
ML Laplace 0 984 79 91 122
cop20k A 0 ∞ ∞ 37 95
FEM 3D thermal2 0 183 40 45 40
thermal2 0 ∞ ∞ 71 ∞
thermomech TK 0 ∞ ∞ 65 ∞
nlpkkt80 0 153 30 29 31
pde100 0 139 24 23 34
webbase-1M 0 ∞ — ∞ 28
dc1 0 ∞ — ∞ 4
amazon0302 0 ∞ 900 37 33
roadNet-CA 0 ∞ ∞ 13 46
web-Google 0 ∞ — ∞ 39
wiki-Talk 0 ∞ — ∞ 5

52

References

[1] W. Abu-Sufah and A. Abdel-Karim. An effective approach for imple-
menting sparse matrix-vector multiplication on graphics processing units.
In Proc. of 14th IEEE Int’l Conf. on High Performance Computing and
Communication, HPCC ’12, pages 453–460, June 2012.

[2] W. Abu-Sufah and A. Abdel-Karim. Auto-tuning of sparse matrix-vector
multiplication on graphics processors. In Supercomputing, volume 7905 of
LNCS, pages 151–164. Springer-Verlag, 2013.

[3] Abal-Kassim Cheik Ahamed and Frederic Magoules. Fast sparse matrix-
vector multiplication on graphics processing unit for finite element anal-
ysis. In Proc. of IEEE 14th Int’l Conference on High Performance Com-
puting and Communications, HPCC ’12, pages 1307–1314, 2012.

[4] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen. LAPACK Users’ Guide. SIAM, 3rd edition, 1999.

[5] Hartwig Anzt, Moritz Kreutzer, Eduardo Ponce, Gregory D. Peterson,
Gerhard Wellein, and Jack Dongarra. Optimization and performance eval-
uation of the IDR iterative Krylov solver on GPUs. Int. J. High Perform.
Comput. Appl., May 2016.

[6] Hartwig Anzt, Stanimire Tomov, and Jack Dongarra. Implementing
a sparse matrix vector product for the SELL-C/SELL-C-σ formats on
NVIDIA GPUs. Technical Report EECS-14-727, University of Tennessee,
2014.

[7] Arash Ashari, Naser Sedaghati, John Eisenlohr, Srinivasan Parthasarathy,
and P. Sadayappan. Fast sparse matrix-vector multiplication on GPUs for
graph applications. In Proc. of Int’l Conf. for High Performance Com-
puting, Networking, Storage and Analysis, SC ’14, pages 781–792, 2014.

[8] Arash Ashari, Naser Sedaghati, John Eisenlohr, and P. Sadayappan. A
model-driven blocking strategy for load balanced sparse matrix-vector
multiplication on GPUs. J. Parallel Distrib. Comput., 76:3–15, Febru-
ary 2015.

[9] D. Barbieri, V. Cardellini, and S. Filippone. Generalized GEMM applica-
tions on GPGPUs: experiments and applications. In Parallel Computing:
from Multicores and GPU’s to Petascale, ParCo ’09, pages 307–314. IOS
Press, 2010.

[10] Davide Barbieri, Valeria Cardellini, Alessandro Fanfarillo, and Salvatore
Filippone. Three storage formats for sparse matrices on GPGPUs. Tech-
nical Report DICII RR-15.6, Università di Roma Tor Vergata, 2015.
http://hdl.handle.net/2108/113393.

53

[11] M. M. Baskaran and R. Bordawekar. Optimizing sparse matrix-vector
multiplication on GPUs. Technical Report RC24704, IBM Research, 2009.

[12] S. Baxter. Modern GPU library, 2013. http://nvlabs.github.io/

moderngpu/.

[13] N. Bell and M. Garland. Efficient sparse matrix-vector multiplication on
CUDA. Technical Report NVR-2008-004, NVIDIA Corp., 2008.

[14] N. Bell and M. Garland. Implementing sparse matrix-vector multiplica-
tion on throughput-oriented processors. In Proc. of Int’l Conf. on High
Performance Computing Networking, Storage and Analysis, SC ’09, pages
18:1–18:11. ACM, 2009.

[15] Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schröoder. Sparse ma-
trix solvers on the GPU: Conjugate gradients and multigrid. ACM Trans.
Graph., 22(3):917–924, 2003.

[16] Luc Buatois, Guillaume Caumon, and Bruno Levy. Concurrent Number
Cruncher: A GPU implementation of a general sparse linear solver. Int.
J. Parallel Emerg. Distrib. Syst., 24(3):205–223, 2009.

[17] Wei Cao, Lu Yao, Zongzhe Li, Yongxian Wang, and Zhenghua Wang.
Implementing sparse matrix-vector multiplication using CUDA based on
a hybrid sparse matrix format. In Proc. of 2010 In’tl Conf. on Computer
Application and System Modeling, volume 11 of ICCASM ’10, pages 161–
165. IEEE, October 2010.

[18] V. Cardellini, A. Fanfarillo, and S. Filippone. Heterogeneous sparse matrix
computations on hybrid GPU/CPU platforms. In Parallel Computing:
Accelerating Computational Science and Engineering (CSE), volume 25
of Advances in Parallel Computing, pages 203–212. IOS Press, 2014.

[19] Valeria Cardellini, Ssalvatore Filippone, and Damian Rouson. Design
patterns for sparse-matrix computations on hybrid CPU/GPU platforms.
Sci. Program., 22(1):1–19, 2014.

[20] Ali Cevahir, Akira Nukada, and Satoshi Matsuoka. Fast conjugate gradi-
ents with multiple GPUs. In Computational Science - ICCS 2009, volume
5544 of LNCS, pages 893–903. Springer, 2009.

[21] J. Choi, J. Demmel, J. Dhillon, J. Dongarra, S. Ostrouchov, A. Petitet,
K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK: A portable linear
algebra library for distributed memory computers. LAPACK Working
Note #95, University of Tennessee, 1995.

[22] J. W. Choi, A. Singh, and R. W. Vuduc. Model-driven autotuning of
sparse matrix-vector multiply on GPUs. SIGPLAN Not., 45:115–126,
January 2010.

54

[23] P Colella. Defining software requirements for scientific comput-
ing, 2004. http://view.eecs.berkeley.edu/w/images/temp/6/6e/

20061003235551!DARPAHPCS.ppt.

[24] CUSP : A C++ Templated Sparse Matrix Library, 2016. http://

cusplibrary.github.io.

[25] M. Daga and J. L. Greathouse. Structural agnostic SpMV: Adapting
CSR-Adaptive for irregular matrices. In Proc. of IEEE 22nd Int’l Conf.
on High Performance Computing, HiPC ’15, pages 64–74, 2015.

[26] Pasqua D’Ambra and Salvatore Filippone. A parallel generalized relax-
ation method for high-performance image segmentation on GPUs. J. Com-
put. Appl. Math., 293:35–44, 2016.

[27] H.-V. Dang and B. Schmidt. CUDA-enabled sparse matrix-vector multi-
plication on GPUs using atomic operations. Parallel Comput., 39(11):737–
750, 2013.

[28] T. Davis. Wilkinson’s sparse matrix definition. NA Digest, 07(12):379–
401, March 2007.

[29] T. A. Davis. Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern
multifrontal method. ACM Trans. Math. Softw., 30(2):196–199, 2004.

[30] T. A. Davis and Y. Hu. The University of Florida Sparse Matrix Collec-
tion. ACM Trans. Math. Softw., 38(1):1:1–1:25, 2011.

[31] M.M. Dehnavi, D.M. Fernandez, and D. Giannacopoulos. Finite-element
sparse matrix vector multiplication on graphic processing units. IEEE
Trans. Magnetics, 46(8):2982–2985, 2010.

[32] D. Elizabeth Dolan and J. Jorge Moré. Benchmarking optimization soft-
ware with performance profiles. Mathematical Programming, 91(2):201–
213, 2002.

[33] I.S. Duff, M. Marrone, G. Radicati, and C. Vittoli. Level 3 basic linear
algebra subprograms for sparse matrices: a user level interface. ACM
Trans. Math. Softw., 23(3):379–401, 1997.

[34] A. Dziekonski, A. Lamecki, and M. Mrozowski. A memory efficient and
fast sparse matrix vector product on a GPU. Progress in Electromagnetics
Research, 116:49–63, 2011.

[35] EESI Working Group 4.3. Working group report on numerical libraries,
solvers and algorithms. Technical report, European Exascale Software
Initiative, 2011. http://www.eesi-project.eu/.

[36] Ahmed H. El Zein and Alistair P. Rendell. Generating optimal CUDA
sparse matrix vector product implementations for evolving GPU hard-
ware. Concurr. Comput.: Pract. Exper., 24(1):3–13, 2012.

55

[37] X. Feng, H. Jin, R. Zheng, K. Hu, J. Zeng, and Z. Shao. Optimization
of sparse matrix-vector multiplication with variant CSR on GPUs. In
Proc. of 17th Int’l Conf. on Parallel and Distributed Systems, ICPADS
’11, pages 165–172. IEEE Computer Society, 2011.

[38] X. Feng, H. Jin, R. Zheng, Z. Shao, and L. Zhu. A segment-based sparse
matrix vector multiplication on CUDA. Concurr. Comput.: Pract. Exper.,
26(1):271–286, 2014.

[39] S. Filippone and A. Buttari. Object-oriented techniques for sparse matrix
computations in Fortran 2003. ACM Trans. Math. Softw., 38(4):23:1–
23:20, 2012.

[40] Jeswin Godwin, Justin Holewinski, and P. Sadayappan. High-performance
sparse matrix-vector multiplication on GPUs for structured grid computa-
tions. In Proc. of the 5th Annual Workshop on General Purpose Processing
with Graphics Processing Units, GPGPU-5, pages 47–56. ACM, 2012.

[41] J.L. Greathouse and M. Daga. Efficient sparse matrix-vector multiplica-
tion on GPUs using the CSR storage format. In Proc. of Int’l Conf. for
High Performance Computing, Networking, Storage and Analysis, SC ’14,
pages 769–780. IEEE, November 2014.

[42] A. Greenbaum. Iterative Methods for Solving Linear Systems. SIAM,
Philadelphia, PA, 1997.

[43] Dominik Grewe and Anton Lokhmotov. Automatically generating and
tuning GPU code for sparse matrix-vector multiplication from a high-level
representation. In Proc. of 4th Workshop on General Purpose Processing
on Graphics Processing Units, GPGPU-4, pages 12:1–12:8. ACM, 2011.

[44] Dahai Guo and William Gropp. Adaptive thread distributions for SpMV
on a GPU. In Proc. of Extreme Scaling Workshop, BW-XSEDE ’12, pages
2:1–2:5, Champaign, IL, 2012. University of Illinois at Urbana-Champaign.

[45] P. Guo, L. Wang, and P. Chen. A performance modeling and optimiza-
tion analysis tool for sparse matrix-vector multiplication on GPUs. IEEE
Trans. Parallel Distrib. Syst., 25(5):1112–1123, 2014.

[46] Ping Guo and Liqiang Wang. Auto-tuning CUDA parameters for sparse
matrix-vector multiplication on GPUs. In Proc. of 2010 Int’l. Conf. on
Computational and Information Sciences, ICCIS ’10, pages 1154–1157.
IEEE Computer Society, December 2010.

[47] Ping Guo and Liqiang Wang. Accurate cross-architecture performance
modeling for sparse matrix-vector multiplication (SpMV) on GPUs. Con-
curr. Comput.: Pract. Exper., 27(13):3281–3294, 2015.

56

[48] M. Heller and Tomás Oberhuber. Improved row-grouped CSR format for
storing of sparse matrices on GPU. In Proc. of Algoritmy 2012, pages
282–290, 2012.

[49] M. R. Hugues and S. G. Petiton. Sparse matrix formats evaluation and
optimization on a GPU. In Proc. of 12th IEEE Int’l Conf. on High Perfor-
mance Computing and Communications, HPCC ’10, pages 122–129. IEEE
Computer Society, September 2010.

[50] W. W. Hwu. GPU Computing Gems Emerald Edition. Morgan Kaufmann
Publishers Inc., San Francisco, CA, 2011.

[51] Sivaramakrisha Bharadwaj Indarapu, Manoj Maramreddy, and Kishore
Kothapalli. Architecture- and workload- aware heterogeneous algorithms
for sparse matrix vector multiplication. In Proc. of 19th IEEE Int’l Conf.
on Parallel and Distributed Systems, ICPADS ’13, December 2013.

[52] V. Karakasis, G. Goumas, and N. Koziris. Perfomance models for blocked
sparse matrix-vector multiplication kernels. In Proc. of 38th Int’l Conf.
on Parallel Processing, ICPP ’09, pages 356–364. IEEE Computer Society,
September 2009.

[53] C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations.
SIAM, Philadelphia, 1995.

[54] D. R Kincaid, T. C. Oppe, and D. M. Young. ITPACKV 2D User’s
Guide, May 1989. http://rene.ma.utexas.edu/CNA/ITPACK/manuals/

userv2d/.

[55] Z. Koza, M. Matyka, S. Szkoda, and L. Miroslaw. Compressed multirow
storage format for sparse matrices on graphics processing units. SIAM J.
Sci. Comput., 36(2):C219–C239, 2014.

[56] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, A. Basermann, and A. R.
Bishop. Sparse matrix-vector multiplication on GPGPU clusters: A new
storage format and a scalable implementation. In Proc. of 26th IEEE
Int’l Parallel and Distributed Processing Symposium Workshops & PhD
Forum, IPDPSW ’12, pages 1696–1702, 2012.

[57] Moritz Kreutzer, Georg Hager, Gerhard Wellein, Holger Fehske, and
Alan R. Bishop. A unified sparse matrix data format for efficient gen-
eral sparse matrix-vector multiplication on modern processors with wide
SIMD units. SIAM J. Sci. Comput., 36(5):C401–C423, 2014.

[58] Yuji Kubota and Daisuke Takahashi. Optimization of sparse matrix-vector
multiplication by auto selecting storage schemes on GPU. In Computa-
tional Science and Its Applications - ICCSA 2011, volume 6783 of LNCS,
pages 547–561. Springer, 2011.

57

[59] Verena Kuhlemann and Panayot S. Vassilievski. Improving the commu-
nication pattern in matrix-vector operations for large scale-free graphs by
disaggregation. SIAM J. Sci. Comput., 35(5):S465–S486, 2013.

[60] D. Langr and P. Tvrdik. Evaluation criteria for sparse matrix storage
formats. IEEE Trans. Parallel Distrib. Syst., 27(2):428–440, 2016.

[61] D. Langr, P. Tvrdik, and I. Simecek. Storing sparse matrices in files in the
adaptive-blocking hierarchical storage format. In Proc. of 2013 Federated
Conference on Computer Science and Information Systems, FedCSIS ’13,
pages 479–486. IEEE, 2013.

[62] Randall J. LeVeque. Finite Difference Methods for Ordinary and Partial
Differential Equations. SIAM, Philadelphia, PA, 2007.

[63] Jiajia Li, Guangming Tan, Mingyu Chen, and Ninghui Sun. SMAT: An
input adaptive auto-tuner for sparse matrix-vector multiplication. In Proc.
of 34th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’13, pages 117–126, 2013.

[64] K. Li, W. Yang, and K. Li. Performance analysis and optimization for
SpMV on GPU using probabilistic modeling. IEEE Trans. Parallel Dis-
trib. Syst., 26(1):196–205, 2015.

[65] R. Li and Y. Saad. GPU-accelerated preconditioned iterative linear
solvers. J. Supercomput., 63(2):443–466, 2013.

[66] HUI Liu, SONG Yu, ZHANGXIN Chen, BEN Hsieh, and LEI Shao.
Sparse matrix-vector multiplication on NVIDIA GPU. Int. J. Numeri-
cal Analysis and Modeling, Series B, 3(2):185–191, 2012.

[67] W. Liu and B. Vinter. CSR5: An efficient storage format for cross-
platform sparse matrix-vector multiplication. In Proc. of 29th Int’l ACM
Conf. on Supercomputing, ICS ’15, 2015.

[68] Yongchao Liu and B. Schmidt. LightSpMV: Faster CSR-based sparse
matrix-vector multiplication on CUDA-enabled GPUs. In Proc. of 26th
Int’l Conf. on Application-specific Systems, Architectures and Processors,
ASAP ’15, pages 82–89, July 2015.

[69] David Luebke, Mark Harris, Naga Govindaraju, Aaron Lefohn, Mike
Houston, John Owens, Mark Segal, Matthew Papakipos, and Ian Buck.
GPGPU: general-purpose computation on graphics hardware. In Proc. of
2006 ACM/IEEE Conf. on Supercomputing, SC ’06, 2006.

[70] M. Maggioni and T. Berger-Wolf. AdELL: An adaptive warp-balancing
ELL format for efficient sparse matrix-vector multiplication on GPUs. In
Proc. of 42nd Int’l Conf. on Parallel Processing, ICPP ’13, pages 11–20.
IEEE Computer Society, October 2013.

58

[71] M. Maggioni and T. Berger-Wolf. CoAdELL: Adaptivity and compression
for improving sparse matrix-vector multiplication on GPUs. In Proc. of
2014 IEEE Int’l Parallel Distributed Processing Symposium Workshops,
IPDPSW ’14, pages 933–940, May 2014.

[72] M. Maggioni, T. Berger-Wolf, and Jie Liang. GPU-based steady-state
solution of the chemical master equation. In Proc. of IEEE 27th Int’l
Parallel and Distributed Processing Symposium Workshops & PhD Forum,
IPDPSW ’13, pages 579–588, May 2013.

[73] Marco Maggioni and Tanya Berger-Wolf. Optimization techniques for
sparse matrix-vector multiplication on GPUs. J. Parallel Distrib. Com-
put., 93–94:66–86, 2016.

[74] Matrix algebra on GPU and multicore architectures, September 2016.
http://icl.cs.utk.edu/magma/.

[75] A. Maringanti, V. Athavale, and S. B. Patkar. Acceleration of conjugate
gradient method for circuit simulation using CUDA. In Proc. of 2009 Int’l
Conf. on High Performance Computing, HiPC ’09, pages 438–444. IEEE,
December 2009.

[76] K.K. Matam and K. Kothapalli. Accelerating sparse matrix vector multi-
plication in iterative methods using GPU. In Proc. of 40th Int’l Conf. on
Parallel Processing, ICPP ’11, pages 612–621. IEEE Computer Society,
September 2011.

[77] A. Monakov and A. Avetisyan. Implementing blocked sparse matrix-vector
multiplication on NVIDIA GPUs. In Embedded Computer Systems: Archi-
tectures, Modeling, and Simulation, volume 5657 of LNCS, pages 289–297.
Springer-Verlag, 2009.

[78] A. Monakov, A. Lokhmotov, and A. Avetisyan. Automatically tuning
sparse matrix-vector multiplication for GPU architectures. In High Per-
formance Embedded Architectures and Compilers, volume 5952 of LNCS,
pages 111–125. Springer-Verlag, 2010.

[79] D. Mukunoki and D. Takahashi. Optimization of sparse matrix-vector
multiplication for CRS format on NVIDIA Kepler architecture GPUs. In
Computational Science and Its Applications, volume 7975 of LNCS, pages
211–223. Springer, 2013.

[80] B. Neelima, S. R. Prakash, and Ram Mohana Reddy. New sparse matrix
storage format to improve the performance of total SpMV time. Scalable
Comput.: Pract. Exper., 13(2):159–171, 2012.

[81] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel pro-
gramming with CUDA. ACM Queue, 6:40–53, March 2008.

59

[82] NVIDIA Corp. CUDA cuSPARSE library, 2015. http://developer.

nvidia.com/cusparse.

[83] Tomás Oberhuber, Atsushi Suzuki, and Jan Vacata. New row-grouped
CSR format for storing the sparse matrices on GPU with implementation
in CUDA. Acta Technica, 56:447–466, 2011.

[84] S. V. Patankar. Numerical Heat Transfer and Fluid Flow. Series in Com-
putational Methods in Mechanics and Thermal Sciences. Hemisphere Pub-
lishing Corp., NY, first edition, 1980.

[85] J. C. Pichel, F. F. Rivera, M. Fernández, and A. Rodŕıguez. Optimiza-
tion of sparse matrix-vector multiplication using reordering techniques on
GPUs. Microprocess. Microsyst., 36(2):65–77, 2012.

[86] A. Quarteroni and A. Valli. Numerical Approximation of Partial Differ-
ential Equations. Springer-Verlag, Berlin, 1994.

[87] I. Reguly and M. Giles. Efficient sparse matrix-vector multiplication on
cache-based GPUs. In Proc. of Innovative Parallel Computing, InPar ’12,
pages 1–12. IEEE, May 2012.

[88] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, 2nd edition, 2003.

[89] J. Sanders and E. Kandrot. CUDA by example: An introduction to
general-purpose GPU programming. Addison-Wesley, Boston, MA, USA,
first edition, 2010.

[90] Naser Sedaghati, Te Mu, Louis-Noel Pouchet, Srinivasan Parthasarathy,
and P. Sadayappan. Automatic selection of sparse matrix representation
on GPUs. In Proc. of 29th ACM Int’l Conf. on Supercomputing, ICS ’15,
pages 99–108, 2015.

[91] M. Shah and V. Patel. An efficient sparse matrix multiplication for skewed
matrix on GPU. In Proc. of 14th IEEE Int’l Conf. on High Performance
Comput. and Comm., pages 1301–1306, June 2012.

[92] Bor-Yiing Su and Kurt Keutzer. clSpMV: a cross-platform OpenCL SpMV
framework on GPUs. In Proc. of 26th ACM Int’l Conf. on Supercomputing,
ICS ’12, pages 353–364, 2012.

[93] Xiangzheng Sun, Yunquan Zhang, Ting Wang, Xianyi Zhang, Liang Yuan,
and Li Rao. Optimizing SpMV for diagonal sparse matrices on GPU. In
Proc. of 40th Int’l Conf. on Parallel Processing, ICPP ’11, pages 492–501.
IEEE Computer Society, September 2011.

[94] W. Tang, W. Tan, R. Goh, S. Turner, and W. Wong. A family of bit-
representation-optimized formats for fast sparse matrix-vector multiplica-
tion on the GPU. IEEE Trans. Parallel Distrib. Syst., 29(9):2373–2385,
2015.

60

[95] Wai Teng Tang, Wen Jun Tan, Rajarshi Ray, Yi Wen Wong, Weiguang
Chen, Shyh-hao Kuo, Rick Siow Mong Goh, Stephen John Turner, and
Weng-Fai Wong. Accelerating sparse matrix-vector multiplication on
GPUs using bit-representation-optimized schemes. In Proc. of Int’l Con-
ference for High Performance Computing, Networking, Storage and Anal-
ysis, SC ’13, pages 26:1–26:12. ACM, 2013.

[96] F. Vázquez, J. J. Fernández, and E. M. Garzón. A new approach for sparse
matrix vector product on NVIDIA GPUs. Concurr. Comput.: Pract.
Exper., 23(8):815–826, 2011.

[97] F. Vázquez, J.J. Fernández, and E. M. Garzón. Automatic tuning of the
sparse matrix vector product on GPUs based on the ELLR-T approach.
Parallel Comput., 38(8):408–420, 2012.

[98] Mickeal Verschoor and Andrei C. Jalba. Analysis and performance es-
timation of the conjugate gradient method on multiple GPUs. Parallel
Comput., 38(10-11):552–575, 2012.

[99] V. Volkov and J. W. Demmel. Benchmarking GPUs to tune dense linear
algebra. In Proc. of 2008 ACM/IEEE Conf. on Supercomputing, SC ’08,
pages 31:1–31:11, 2008.

[100] Zhuowei Wang, Xianbin Xu, Wuqing Zhao, Yuping Zhang, and Shuibing
He. Optimizing sparse matrix-vector multiplication on CUDA. In Proc.
of 2nd Int’l Conf. on Education Technology and Computer, volume 4 of
ICETC ’10, pages 109–113. IEEE, June 2010.

[101] Daniel Weber, Jan Bender, Markus Schnoes, André Stork, and Dieter
Fellner. Efficient GPU data structures and methods to solve sparse linear
systems in dynamics applications. Computer Graphics Forum, 32(1):16–
26, 2013.

[102] S. Williams, A. Waterman, and D. Patterson. Roofline: An insightful
visual performance model for multicore architectures. Commun. ACM,
52(4):65–76, 2009.

[103] Sam Williams, Nathan Bell, Jee Whan Choi, Michael Garland, Leonid
Oliker, and Richard Vuduc. Sparse matrix-vector multiplication on mul-
ticore and accelerators. In Scientific Computing on Multicore and Accel-
erators, pages 83–109. CRC Press, Boca Raton, FL, December 2010.

[104] Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine
Yelick, and James Demmel. Optimization of sparse matrix-vector multipli-
cation on emerging multicore platforms. Parallel Comput., 35(3):178–194,
2009.

[105] J. Wong, E. Kuhl, and E. Darve. A new sparse matrix vector multi-
plication graphics processing unit algorithm designed for finite element

61

problems. Int’l J. Numerical Methods in Engineering, 102(12):1784–1814,
2015.

[106] Weizhi Xu, Hao Zhang, Shuai Jiao, Da Wang, Fenglong Song, and Zhiyong
Liu. Optimizing sparse matrix vector multiplication using cache blocking
method on Fermi GPU. In Proc. of 13th ACIS Int’l Conf. on Software
Engineering, Artificial Intelligence, Networking and Parallel Distributed
Computing, SNPD ’12, pages 231–235. IEEE Computer Society, August
2012.

[107] S. Yan, C. Li, Y. Zhang, and H. Zhou. yaSpMV: yet another SpMV
framework on GPUs. In Proc. of 19th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’14, pages 107–
118, February 2014.

[108] Mei Yang, Cheng Sun, Zhimin Li, and Dayong Cao. An improved sparse
matrix-vector multiplication kernel for solving modified equation in large
scale power flow calculation on CUDA. In Proc. of 7th Int’l Power Elec-
tronics and Motion Control Conf., volume 3 of IPEMC ’12, pages 2028–
2031. IEEE, June 2012.

[109] W. Yang, K. Li, Z. Mo, and K. Li. Performance optimization using par-
titioned SpMV on GPUs and multicore CPUs. IEEE Trans. Comput.,
64(9):2623–2636, 2015.

[110] Wangdong Yang, Kenli Li, Yan Liu, Lin Shi, and Lanjun Wan. Optimiza-
tion of quasi-diagonal matrix-vector multiplication on GPU. Int. J. High
Perform. Comput. Appl., 28(2):183–195, 2014.

[111] Xintian Yang, Srinivasan Parthasarathy, and P. Sadayappan. Fast sparse
matrix-vector multiplication on GPUs: Implications for graph mining.
Proc. VLDB Endow., 4(4):231–242, 2011.

[112] H. Yoshizawa and D. Takahashi. Automatic tuning of sparse matrix-
vector multiplication for CRS format on GPUs. In Proc. of IEEE 15th
Int’l Conf. on Computational Science and Engineering, CSE ’12, pages
130–136, December 2012.

[113] Liang Yuan, Yunquan Zhang, Xiangzheng Sun, and Ting Wang. Opti-
mizing sparse matrix vector multiplication using diagonal storage matrix
format. In Proc. of 12th IEEE Int’l Conf. on High Performance Comput-
ing and Communications, HPCC ’10, pages 585–590, September 2010.

[114] Cong Zheng, Shuo Gu, Tong-Xiang Gu, Bing Yang, and Xing-Ping Liu.
BiELL: A bisection ELLPACK based storage format for optimizing SpMV
on GPUs. J. Parallel Distrib. Comput., 74(7):2639–2647, 2014.

62

