1,779 research outputs found

    VConv-DAE: Deep Volumetric Shape Learning Without Object Labels

    Full text link
    With the advent of affordable depth sensors, 3D capture becomes more and more ubiquitous and already has made its way into commercial products. Yet, capturing the geometry or complete shapes of everyday objects using scanning devices (e.g. Kinect) still comes with several challenges that result in noise or even incomplete shapes. Recent success in deep learning has shown how to learn complex shape distributions in a data-driven way from large scale 3D CAD Model collections and to utilize them for 3D processing on volumetric representations and thereby circumventing problems of topology and tessellation. Prior work has shown encouraging results on problems ranging from shape completion to recognition. We provide an analysis of such approaches and discover that training as well as the resulting representation are strongly and unnecessarily tied to the notion of object labels. Thus, we propose a full convolutional volumetric auto encoder that learns volumetric representation from noisy data by estimating the voxel occupancy grids. The proposed method outperforms prior work on challenging tasks like denoising and shape completion. We also show that the obtained deep embedding gives competitive performance when used for classification and promising results for shape interpolation

    An investigation of a deep learning based malware detection system

    Full text link
    We investigate a Deep Learning based system for malware detection. In the investigation, we experiment with different combination of Deep Learning architectures including Auto-Encoders, and Deep Neural Networks with varying layers over Malicia malware dataset on which earlier studies have obtained an accuracy of (98%) with an acceptable False Positive Rates (1.07%). But these results were done using extensive man-made custom domain features and investing corresponding feature engineering and design efforts. In our proposed approach, besides improving the previous best results (99.21% accuracy and a False Positive Rate of 0.19%) indicates that Deep Learning based systems could deliver an effective defense against malware. Since it is good in automatically extracting higher conceptual features from the data, Deep Learning based systems could provide an effective, general and scalable mechanism for detection of existing and unknown malware.Comment: 13 Pages, 4 figure

    Malware Detection using Machine Learning and Deep Learning

    Full text link
    Research shows that over the last decade, malware has been growing exponentially, causing substantial financial losses to various organizations. Different anti-malware companies have been proposing solutions to defend attacks from these malware. The velocity, volume, and the complexity of malware are posing new challenges to the anti-malware community. Current state-of-the-art research shows that recently, researchers and anti-virus organizations started applying machine learning and deep learning methods for malware analysis and detection. We have used opcode frequency as a feature vector and applied unsupervised learning in addition to supervised learning for malware classification. The focus of this tutorial is to present our work on detecting malware with 1) various machine learning algorithms and 2) deep learning models. Our results show that the Random Forest outperforms Deep Neural Network with opcode frequency as a feature. Also in feature reduction, Deep Auto-Encoders are overkill for the dataset, and elementary function like Variance Threshold perform better than others. In addition to the proposed methodologies, we will also discuss the additional issues and the unique challenges in the domain, open research problems, limitations, and future directions.Comment: 11 Pages and 3 Figure
    • …
    corecore