1,128 research outputs found

    Revisiting Deniability in Quantum Key Exchange via Covert Communication and Entanglement Distillation

    Full text link
    We revisit the notion of deniability in quantum key exchange (QKE), a topic that remains largely unexplored. In the only work on this subject by Donald Beaver, it is argued that QKE is not necessarily deniable due to an eavesdropping attack that limits key equivocation. We provide more insight into the nature of this attack and how it extends to other constructions such as QKE obtained from uncloneable encryption. We then adopt the framework for quantum authenticated key exchange, developed by Mosca et al., and extend it to introduce the notion of coercer-deniable QKE, formalized in terms of the indistinguishability of real and fake coercer views. Next, we apply results from a recent work by Arrazola and Scarani on covert quantum communication to establish a connection between covert QKE and deniability. We propose DC-QKE, a simple deniable covert QKE protocol, and prove its deniability via a reduction to the security of covert QKE. Finally, we consider how entanglement distillation can be used to enable information-theoretically deniable protocols for QKE and tasks beyond key exchange.Comment: 16 pages, published in the proceedings of NordSec 201

    Using quantum key distribution for cryptographic purposes: a survey

    Full text link
    The appealing feature of quantum key distribution (QKD), from a cryptographic viewpoint, is the ability to prove the information-theoretic security (ITS) of the established keys. As a key establishment primitive, QKD however does not provide a standalone security service in its own: the secret keys established by QKD are in general then used by a subsequent cryptographic applications for which the requirements, the context of use and the security properties can vary. It is therefore important, in the perspective of integrating QKD in security infrastructures, to analyze how QKD can be combined with other cryptographic primitives. The purpose of this survey article, which is mostly centered on European research results, is to contribute to such an analysis. We first review and compare the properties of the existing key establishment techniques, QKD being one of them. We then study more specifically two generic scenarios related to the practical use of QKD in cryptographic infrastructures: 1) using QKD as a key renewal technique for a symmetric cipher over a point-to-point link; 2) using QKD in a network containing many users with the objective of offering any-to-any key establishment service. We discuss the constraints as well as the potential interest of using QKD in these contexts. We finally give an overview of challenges relative to the development of QKD technology that also constitute potential avenues for cryptographic research.Comment: Revised version of the SECOQC White Paper. Published in the special issue on QKD of TCS, Theoretical Computer Science (2014), pp. 62-8

    Heterogeneous Tree Based Authenticated Group Key Transfer Protocol

    Get PDF
    Message passing from one source to another has become a key for many upcoming technologies. This is already achieved by introduction of topics of KEYS, AUTHENTICATIONS etc. Secret key transfer is being done presently by using mutually trusted key generation centre (KGS). By this selection of session key by which encryption is done for information passing is selected. This paper discusses about the advancement of this technology by extending this service to group instead of a single key. The whole group with authenticated users can access the information. The proposed protocol considers the heterogeneity of the peer resources as QOS factor in key generation phase and shared key mechanism as primary process to achieve security in group key sharing

    An Authenticated Key Agreement Scheme Based on Cyclic Automorphism Subgroups of Random Orders

    Full text link
    Group-based cryptography is viewed as a modern cryptographic candidate solution to blocking quantum computer attacks, and key exchange protocols on the Internet are one of the primitives to ensure the security of communication. In 2016 Habeeb et al proposed a “textbook” key exchange protocol based on the semidirect product of two groups, which is insecure for use in real-world applications. In this paper, after discarding the unnecessary disguising notion of semidirect product in the protocol, we establish a simplified yet enhanced authenticated key agreement scheme based on cyclic automorphism subgroups of random orders by making hybrid use of certificates and symmetric-key encryption as challenge-and-responses in the public-key setting. Its passive security is formally analyzed, which is relative to the cryptographic hardness assumption of a computational number-theoretic problem. Cryptanalysis of this scheme shows that it is secure against the intruder-in-the-middle attack even in the worst case of compromising the signatures, and provides explicit key confirmation to both parties

    Energy efficient mining on a quantum-enabled blockchain using light

    Full text link
    We outline a quantum-enabled blockchain architecture based on a consortium of quantum servers. The network is hybridised, utilising digital systems for sharing and processing classical information combined with a fibre--optic infrastructure and quantum devices for transmitting and processing quantum information. We deliver an energy efficient interactive mining protocol enacted between clients and servers which uses quantum information encoded in light and removes the need for trust in network infrastructure. Instead, clients on the network need only trust the transparent network code, and that their devices adhere to the rules of quantum physics. To demonstrate the energy efficiency of the mining protocol, we elaborate upon the results of two previous experiments (one performed over 1km of optical fibre) as applied to this work. Finally, we address some key vulnerabilities, explore open questions, and observe forward--compatibility with the quantum internet and quantum computing technologies.Comment: 25 pages, 5 figure
    • …
    corecore