1,528 research outputs found

    Benefits of data augmentation for NMT-based text normalization of user-generated content

    Get PDF
    One of the most persistent characteristics of written user-generated content (UGC) is the use of non-standard words. This characteristic contributes to an increased difficulty to automatically process and analyze UGC. Text normalization is the task of transforming lexical variants to their canonical forms and is often used as a pre-processing step for conventional NLP tasks in order to overcome the performance drop that NLP systems experience when applied to UGC. In this work, we follow a Neural Machine Translation approach to text normalization. To train such an encoder-decoder model, large parallel training corpora of sentence pairs are required. However, obtaining large data sets with UGC and their normalized version is not trivial, especially for languages other than English. In this paper, we explore how to overcome this data bottleneck for Dutch, a low-resource language. We start off with a publicly available tiny parallel Dutch data set comprising three UGC genres and compare two different approaches. The first is to manually normalize and add training data, a money and time-consuming task. The second approach is a set of data augmentation techniques which increase data size by converting existing resources into synthesized non-standard forms. Our results reveal that a combination of both approaches leads to the best results

    Basque-to-Spanish and Spanish-to-Basque machine translation for the health domain

    Get PDF
    [EU]Master Amaierako Lan honek medikuntza domeinuko euskara eta gaztelera arteko itzulpen automatiko sistema bat garatzeko helburuarekin emandako lehenengo urratsak aurkezten ditu. Corpus elebidun nahikoaren faltan, hainbat esperimentu burutu dira Itzulpen Automatiko Neuronalean erabiltzen diren parametroak domeinuz kanpoko corpusean aztertzeko; medikuntza domeinuan izandako jokaera ebaluatzeko ordea, eskuz itzulitako corpusa erabili da medikuntza domeinuko corpusen presentzia handituz entrenatutako sistema desberdinak probatzeko. Lortutako emaitzek deskribatutako helbururako bidean lehenengo aurrerapausoa suposatzen dute.[EN]This project presents the initial steps towards the objective of developing a Machine Translation system for the health domain between Basque and Spanish. In the absence of a big enough bilingual corpus, several experiments have been carried out to test different Neural Machine Translation parameters on an out-of-domain corpus; while performance on the health domain has been evaluated with a manually translated corpus in different systems trained with increasing presence of health domain corpora. The results obtained represent a first step forward to the described objective

    Integrating Rules and Dictionaries from Shallow-Transfer Machine Translation into Phrase-Based Statistical Machine Translation

    Get PDF
    We describe a hybridisation strategy whose objective is to integrate linguistic resources from shallow-transfer rule-based machine translation (RBMT) into phrase-based statistical machine translation (PBSMT). It basically consists of enriching the phrase table of a PBSMT system with bilingual phrase pairs matching transfer rules and dictionary entries from a shallow-transfer RBMT system. This new strategy takes advantage of how the linguistic resources are used by the RBMT system to segment the source-language sentences to be translated, and overcomes the limitations of existing hybrid approaches that treat the RBMT systems as a black box. Experimental results confirm that our approach delivers translations of higher quality than existing ones, and that it is specially useful when the parallel corpus available for training the SMT system is small or when translating out-of-domain texts that are well covered by the RBMT dictionaries. A combination of this approach with a recently proposed unsupervised shallow-transfer rule inference algorithm results in a significantly greater translation quality than that of a baseline PBSMT; in this case, the only hand-crafted resource used are the dictionaries commonly used in RBMT. Moreover, the translation quality achieved by the hybrid system built with automatically inferred rules is similar to that obtained by those built with hand-crafted rules.Research funded by the Spanish Ministry of Economy and Competitiveness through projects TIN2009-14009-C02-01 and TIN2012-32615, by Generalitat Valenciana through grant ACIF 2010/174, and by the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement PIAP-GA-2012-324414 (Abu-MaTran)

    Using Comparable Corpora to Augment Statistical Machine Translation Models in Low Resource Settings

    Get PDF
    Previously, statistical machine translation (SMT) models have been estimated from parallel corpora, or pairs of translated sentences. In this thesis, we directly incorporate comparable corpora into the estimation of end-to-end SMT models. In contrast to parallel corpora, comparable corpora are pairs of monolingual corpora that have some cross-lingual similarities, for example topic or publication date, but that do not necessarily contain any direct translations. Comparable corpora are more readily available in large quantities than parallel corpora, which require significant human effort to compile. We use comparable corpora to estimate machine translation model parameters and show that doing so improves performance in settings where a limited amount of parallel data is available for training. The major contributions of this thesis are the following: * We release ‘language packs’ for 151 human languages, which include bilingual dictionaries, comparable corpora of Wikipedia document pairs, comparable corpora of time-stamped news text that we harvested from the web, and, for non-roman script languages, dictionaries of name pairs, which are likely to be transliterations. * We present a novel technique for using a small number of example word translations to learn a supervised model for bilingual lexicon induction which takes advantage of a wide variety of signals of translation equivalence that can be estimated over comparable corpora. * We show that using comparable corpora to induce new translations and estimate new phrase table feature functions improves end-to-end statistical machine translation performance for low resource language pairs as well as domains. * We present a novel algorithm for composing multiword phrase translations from multiple unigram translations and then use comparable corpora to prune the large space of hypothesis translations. We show that these induced phrase translations improve machine translation performance beyond that of component unigrams. This thesis focuses on critical low resource machine translation settings, where insufficient parallel corpora exist for training statistical models. We experiment with both low resource language pairs and low resource domains of text. We present results from our novel error analysis methodology, which show that most translation errors in low resource settings are due to unseen source language words and phrases and unseen target language translations. We also find room for fixing errors due to how different translations are weighted, or scored, in the models. We target both error types; we use comparable corpora to induce new word and phrase translations and estimate novel translation feature scores. Our experiments show that augmenting baseline SMT systems with new translations and features estimated over comparable corpora improves translation performance significantly. Additionally, our techniques expand the applicability of statistical machine translation to those language pairs for which zero parallel text is available

    Improving the Representation and Conversion of Mathematical Formulae by Considering their Textual Context

    Full text link
    Mathematical formulae represent complex semantic information in a concise form. Especially in Science, Technology, Engineering, and Mathematics, mathematical formulae are crucial to communicate information, e.g., in scientific papers, and to perform computations using computer algebra systems. Enabling computers to access the information encoded in mathematical formulae requires machine-readable formats that can represent both the presentation and content, i.e., the semantics, of formulae. Exchanging such information between systems additionally requires conversion methods for mathematical representation formats. We analyze how the semantic enrichment of formulae improves the format conversion process and show that considering the textual context of formulae reduces the error rate of such conversions. Our main contributions are: (1) providing an openly available benchmark dataset for the mathematical format conversion task consisting of a newly created test collection, an extensive, manually curated gold standard and task-specific evaluation metrics; (2) performing a quantitative evaluation of state-of-the-art tools for mathematical format conversions; (3) presenting a new approach that considers the textual context of formulae to reduce the error rate for mathematical format conversions. Our benchmark dataset facilitates future research on mathematical format conversions as well as research on many problems in mathematical information retrieval. Because we annotated and linked all components of formulae, e.g., identifiers, operators and other entities, to Wikidata entries, the gold standard can, for instance, be used to train methods for formula concept discovery and recognition. Such methods can then be applied to improve mathematical information retrieval systems, e.g., for semantic formula search, recommendation of mathematical content, or detection of mathematical plagiarism.Comment: 10 pages, 4 figure

    Basque-to-Spanish and Spanish-to-Basque machine translation for the health domain

    Get PDF
    [EU]Master Amaierako Lan honek medikuntza domeinuko euskara eta gaztelera arteko itzulpen automatiko sistema bat garatzeko helburuarekin emandako lehenengo urratsak aurkezten ditu. Corpus elebidun nahikoaren faltan, hainbat esperimentu burutu dira Itzulpen Automatiko Neuronalean erabiltzen diren parametroak domeinuz kanpoko corpusean aztertzeko; medikuntza domeinuan izandako jokaera ebaluatzeko ordea, eskuz itzulitako corpusa erabili da medikuntza domeinuko corpusen presentzia handituz entrenatutako sistema desberdinak probatzeko. Lortutako emaitzek deskribatutako helbururako bidean lehenengo aurrerapausoa suposatzen dute.[EN]This project presents the initial steps towards the objective of developing a Machine Translation system for the health domain between Basque and Spanish. In the absence of a big enough bilingual corpus, several experiments have been carried out to test different Neural Machine Translation parameters on an out-of-domain corpus; while performance on the health domain has been evaluated with a manually translated corpus in different systems trained with increasing presence of health domain corpora. The results obtained represent a first step forward to the described objective
    corecore