1,682 research outputs found

    Augmented reality-based training of the PCB assembly process

    Get PDF
    In this paper we propose an augmented reality (AR) based assistance system for reliably teaching the assembly process of printed circuit boards (PCB) to workers by using a smart glass running a self-developed software. The system is operated freehand by looking at QR-Codes and highlights a component’s retrieval location and installation point in the user’s field of vision by using four markers. A study executed in a production line of an Electronics Manufacturing Services (EMS)- company resulted in an errorless performance of each individual participant who was equipped with the system. This paper describes the related work, concept and implementation of the software as well as the conducted study and its results. Finally a conclusion summarizes the success of the system and hints at future work

    Virtual Commissioning for Industrial Automation

    Get PDF
    A thesis presented to the faculty of the College of Business and Technology at Morehead State University in partial fulfillment of the requirements for the Degree Master of Science by Saihiranmitra Mudiki on November 7, 2017

    Adopting augmented reality in the age of industrial digitalisation

    Get PDF
    Industrial augmented reality (IAR) is one of the key pillars of the industrial digitalisation concepts, which connects workers with the physical world through overlaying digital information. Augmented reality (AR) market is increasing but still its adoption levels are low in industry. While companies strive to learn and adopt AR, there are chances that they fail in such endeavours due to lack of understanding key challenges and success factors in this space. This study identifies critical success factors and challenges for IAR implementation projects based on field experiments. The broadly used technology, organisation, environment (TOE) framework was used as a theoretical basis for the study, while 22 experiments were conducted for validation. It is found that, while technological aspects are of importance, organisational issues are more relevant for industry, which has not been reflected to the same extent in the literature.No funding source. 22 experiments were conducted with in-kind support (employee time and company access) from Beckhoff Automation, Herman Miller and fluiconnecto as well as University of Cambridge students (see Table 1)

    Plasma sprayed titanium coatings with/without a shroud

    Get PDF
    Abstract: Titanium coatings were deposited by plasma spraying with and without a shroud. The titanium coatings were then assessed by scanning electron microscopy. A comparison in microstructure between titanium coatings with and without the shroud was carried out. The results showed that the shroud played an important role in protecting the titanium particles from oxidation. The presence of the shroud led to a reduction in coating porosity. The reduction in air entrainment with t he shroud resulted in better heating of the particles, and an enhanced microstructure with lower porosity in the shrouded titanium coatings were observed compared to the air plasma sprayed counterpart

    The Use of a Convolutional Neural Network in Detecting Soldering Faults from a Printed Circuit Board Assembly

    Get PDF
    Automatic Optical Inspection (AOI) is any method of detecting defects during a Printed Circuit Board (PCB) manufacturing process. Early AOI methods were based on classic image processing algorithms using a reference PCB. The traditional methods require very complex and inflexible preprocessing stages. With recent advances in the field of deep learning, especially Convolutional Neural Networks (CNN), automating various computer vision tasks has been established. Limited research has been carried out in the past on using CNN for AOI. The present systems are inflexible and require a lot of preprocessing steps or a complex illumination system to improve the accuracy. This paper studies the effectiveness of using CNN to detect soldering bridge faults in a PCB assembly. The paper presents a method for designing an optimized CNN architecture to detect soldering faults in a PCBA. The proposed CNN architecture is compared with the state-of-the-art object detection architecture, namely YOLO, with respect to detection accuracy, processing time, and memory requirement. The results of our experiments show that the proposed CNN architecture has a 3.0% better average precision, has 50% less number of parameters and infers in half the time as YOLO. The experimental results prove the effectiveness of using CNN in AOI by using images of a PCB assembly without any reference image, any complex preprocessing stage, or a complex illumination system. Doi: 10.28991/HIJ-2022-03-01-01 Full Text: PD

    Augmented reality in support of intelligent manufacturing – A systematic literature review

    Get PDF
    Industry increasingly moves towards digitally enabled ‘smart factories’ that utilise the internet of things (IoT) to realise intelligent manufacturing concepts like predictive maintenance or extensive machine to machine communication. A core technology to facilitate human integration in such a system is augmented reality (AR), which provides people with an interface to interact with the digital world of a smart factory. While AR is not ready yet for industrial deployment in some areas, it is already used in others. To provide an overview of research activities concerning AR in certain shop floor operations, a total of 96 relevant papers from 2011 to 2018 are reviewed. This paper presents the state of the art, the current challenges, and future directions of manufacturing related AR research through a systematic literature review and a citation network analysis. The results of this review indicate that the context of research concerning AR gets increasingly broader, especially by addressing challenges when implementing AR solutions.No funding was received

    Mixed Reality-based Process Control of Automatic Printed Circuit Board Assembly Lines

    Get PDF
    A mixed reality (MR)-based concept for supporting and optimizing the way operators work with automatic printed circuit board (PCB) assembly lines, is proposed. In order to enhance the work process’ interface, users are outfitted with a head-mounted display (HMD), so they can both actively access process relevant machine data and passively receive system notifications in a heads-up display (HUD), instead of having to manually query the terminal of the machine of interest at its very location. This approach was implemented and tested in a field study with one of the assembly lines of an electronics manufacturing services (EMS)-company. 30 staff members were recruited as test subjects and 90% of them appreciated the system deployment, due to its noticeable additional benefits compared to the status quo

    Smart Technologies for Precision Assembly

    Get PDF
    This open access book constitutes the refereed post-conference proceedings of the 9th IFIP WG 5.5 International Precision Assembly Seminar, IPAS 2020, held virtually in December 2020. The 16 revised full papers and 10 revised short papers presented together with 1 keynote paper were carefully reviewed and selected from numerous submissions. The papers address topics such as assembly design and planning; assembly operations; assembly cells and systems; human centred assembly; and assistance methods in assembly

    Augmented reality in support of Industry 4.0—Implementation challenges and success factors

    Get PDF
    Industrial augmented reality (AR) is an integral part of Industry 4.0 concepts, as it enables workers to access digital information and overlay that information with the physical world. While not being broadly adopted in some applications, the compound annual growth rate of the industrial AR market is projected to grow rapidly. Hence, it is important to understand the issues arising from implementation of AR in industry. This study identifies critical success factors and challenges for industrial AR implementation projects, based on an industry survey. The broadly used technology, organisation, environment (TOE) framework is used as a theoretical basis for the quantitative part of the questionnaire. A complementary qualitative part is used to underpin and extend the findings. It is found that, while technological aspects are of importance, organisational issues are more relevant for industry, which has not been reflected to the same extent in literature.University of Cambridg
    • …
    corecore