219 research outputs found

    GANS-based data augmentation for citrus disease severity detection using deep learning

    Get PDF
    Recently, many Deep Learning models have been employed to classify different kinds of plant diseases, but very little work has been done for disease severity detection. However, it is more important to master the severities of plant diseases accurately and timely, as it helps to make effective decisions to protect the plants from being further infected and reduce financial loss. In this paper, based on the Huanglongbing (HLB)-infected leaf images obtained from PlantVillage and crowdAI, we created a dataset with 5,406 citrus leaf images infected by HLB. Then six different kinds of popular models were trained to perform the severity detection of citrus HLB with the goal to find which types of models are more suitable to detect HLB severity with the same training circumstance. The experimental results show that the Inception_v3 model with epochs=60 can achieve higher accuracy than that of other models for severity detection with an accuracy of 74.38% due to its highly computational efficiency and small number of parameters. Additionally, aiming for evaluating whether GANs-based data augmentation can contribute to improve the model learning performance, we adopted DCGANs (Deep Convolutional Generative Adversarial Networks) to augment the original training dataset up to two times itself. Finally, a new training dataset with 14,056 leaf images composed by the original training images and the augmented ones were used to train the Inception_v3 model. As a result, we achieved an accuracy of 92.60%, about 20% higher than that of the Inception_v3 model trained by the original training dataset, which suggested that the GANs-based data augmentation is very useful to improve the model learning performance

    Semantically Selective Augmentation for Deep Compact Person Re-Identification

    Get PDF
    We present a deep person re-identification approach that combines semantically selective, deep data augmentation with clustering-based network compression to generate high performance, light and fast inference networks. In particular, we propose to augment limited training data via sampling from a deep convolutional generative adversarial network (DCGAN), whose discriminator is constrained by a semantic classifier to explicitly control the domain specificity of the generation process. Thereby, we encode information in the classifier network which can be utilized to steer adversarial synthesis, and which fuels our CondenseNet ID-network training. We provide a quantitative and qualitative analysis of the approach and its variants on a number of datasets, obtaining results that outperform the state-of-the-art on the LIMA dataset for long-term monitoring in indoor living spaces

    Semantically selective augmentation for deep compact person re-identification

    Get PDF
    We present a deep person re-identification approach that combines semantically selective, deep data augmentation with clustering-based network compression to generate high performance, light and fast inference networks. In particular, we propose to augment limited training data via sampling from a deep convolutional generative adversarial network (DCGAN), whose discriminator is constrained by a semantic classifier to explicitly control the domain specificity of the generation process. Thereby, we encode information in the classifier network which can be utilized to steer adversarial synthesis, and which fuels our CondenseNet ID-network training. We provide a quantitative and qualitative analysis of the approach and its variants on a number of datasets, obtaining results that outperform the state-of-the-art on the LIMA dataset for long-term monitoring in indoor living spaces

    Facial component-landmark detection with weakly-supervised LR-CNN

    Full text link
    © 2013 IEEE. In this paper, we propose a weakly supervised landmark-region-based convolutional neural network (LR-CNN) framework to detect facial component and landmark simultaneously. Most of the existing course-to-fine facial detectors fail to detect landmark accurately without lots of fully labeled data, which are costly to obtain. We can handle the task with a small amount of finely labeled data. First, deep convolutional generative adversarial networks are utilized to generate training samples with weak labels, as data preparation. Then, through weakly supervised learning, our LR-CNN model can be trained effectively with a small amount of finely labeled data and a large amount of generated weakly labeled data. Notably, our approach can handle the situation when large occlusion areas occur, as we localize visible facial components before predicting corresponding landmarks. Detecting unblocked components first helps us to focus on the informative area, resulting in a better performance. Additionally, to improve the performance of the above tasks, we design two models as follows: 1) we add AnchorAlign in the region proposal networks to accurately localize components and 2) we propose a two-branch model consisting classification branch and regression branch to detect landmark. Extensive evaluations on benchmark datasets indicate that our proposed approach is able to complete the multi-task facial detection and outperforms the state-of-the-art facial component and landmark detection algorithms
    • …
    corecore