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Abstract. We present a deep person re-identification approach that
combines semantically selective, deep data augmentation with clustering-
based network compression to generate high performance, light and fast
inference networks. In particular, we propose to augment limited train-
ing data via sampling from a deep convolutional generative adversarial
network (DCGAN), whose discriminator is constrained by a semantic
classifier to explicitly control the domain specificity of the generation
process. Thereby, we encode information in the classifier network which
can be utilized to steer adversarial synthesis, and which fuels our Con-
denseNet ID-network training. We provide a quantitative and qualitative
analysis of the approach and its variants on a number of datasets, ob-
taining results that outperform the state-of-the-art on the LIMA dataset
for long-term monitoring in indoor living spaces.

Keywords: Person Re-Identification, Selective Augmentation, Face Fil-
tering, Adversarial Synthesis, Deep Compression.

1 Introduction

Person re-identification (Re-ID) across cameras with disjoint fields of view, given
unobserved intervals and varying appearance (e.g. change in clothing), remains
a challenging subdomain of computer vision. The task is particularly demanding
whenever facial biometrics [29] are not explicitly applicable, be that due to very
low resolution [7] or non-frontal shots. Deep learning approaches have recently
been customized, moving the domain of person Re-ID forward [1] with potential
impact on a wide range of applications, for example, CCTV surveillance [5] and
e-health applications for living and working environments [23]. Yet, obtaining
cross-referenced ground truth over long term [17,27], realising deployment of in-
expensive inference platforms, and establishing visual identities from strongly
limited data – all remain fundamental challenges. In particular, the dependency
of most deep learning paradigms on vast training data pools and high computa-
tional requirements for heavy inference networks appear as significant challenges
to many person Re-ID settings.
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Fig. 1. Framework Overview. Visual deep learning pipeline at the core of our ap-
proach: inputs (dark gray) are semantically filtered via a face detector (green) to en-
hance adversarial augmentation via DCGANs (blue). Original and synthetic data are
combined to train a compressed CondenseNet (red) for light and fast ID-inference.

In this paper, we introduce an approach for producing high performance,
light and fast deep Re-ID inference networks for people - built from limited
training data and not explicitly dependent on face identification. To achieve
this, we propose an interplay of three recent deep learning technologies as de-
picted in Figure 1: deep convolutional adversarial networks (DCGANs) [21] as
class-specific sample generators (in blue); face detectors [25] used as semantic
guarantors to steer synthesis (in green); and a clustering-based CondenseNet [10]
as a compressor (in red). We show that the proposed face-selective adversarial
synthesis allows to generate new, semantically selective and meaningful artifi-
cial images that can improve subsequent training of compressive ID networks.
Whilst the training cost of our approach can be significant due to the adversarial
networks’ slow and complicated convergence process [6], our parameter count of
final CondenseNets is approximately one order of magnitude smaller than those
of other state-of-the-art systems, such as ResNet50 [33]. We provide a quanti-
tative and qualitative analysis over different adversarial synthesis paradigms for
our approach, obtaining results that outperform the highest achievements on the
LIMA dataset [14] for long-term monitoring in indoor living environments.

2 Related Work
Performing person Re-ID is a popular and long-standing research area with
considerable history and specific associated challenges [32]. Low-resolution face
recognition [7], gait and behaviour analysis [26], as well as full-person, appearance-
based recognition [32] all offer routes to performing ‘in-effect’ person ID or Re-
ID. Here we will review particular technical aspects most relevant to the work
at hand, i.e. looking specifically at recent augmentation and deep learning ap-
proaches for appearance-based methods.

Augmentation - Despite improvements in methods for high-quality, high-
volume ground truth acquisition [17,19], input data augmentation [18] remains
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a key strategy to support generalisation in deep network training generally. The
use of synthetic training data presents several advantages, such as the ability to
reduce the effort of labeling images and to generate customizable domain-specific
data. It has been noted that combining synthetic and measured input often shows
improved performance over using synthetic images only [24]. Recent examples
of non-augmented, innovative approaches in the person Re-ID domain include
feature selection strategies [8,12], anthropometric profiling [2] using depth cam-
eras, and multi-modal tracking [19], amongst many others. Augmentation has
long been used in Re-ID scenarios too, for instance in [1], the authors consider
structural aspects of the human body by exploiting mere RGB data to fully gen-
erate semi-realistic synthetic data as inputs to train neural networks, obtaining
promising results for person Re-ID. Image augmentation techniques have also
demonstrated effectiveness in improving the discriminative ability of learned
CNN embeddings for person Re-ID, especially on large-scale datasets [33,1,3].

Adversarial Synthesis - Generative Adversarial Networks (GANs) [6] in
particular have been widely and successfully applied to deliver augmentation
– mainly building on their ability to construct a latent space that underpins
the training data, and to sample from it to produce new training information.
DCGANs [21] pair the GAN concept with compact convolutional operations to
synthesise visual content more efficiently. The DCGAN’s ability to organise the
relationship between a latent space and an actual image space associated to the
GAN input has been shown in a wide variety of applications, including face and
pose analysis [21,16]. In these and other domains, latent spaces have been con-
structed that can convincingly model and parameterise object attributes such
as scale, rotation, and position from unsupervised models, and hence dramati-
cally reduce the amount of data needed for conditional generative modeling of
complex image distributions.

Compression and Framework - Given ever-growing computational re-
quirements for very-deep inference networks, recent research into network com-
pression and optimisation has produced a number of approaches capable of com-
pactly capturing network functionality. Some examples include ShuffleNet [30],
MobileNet [9], and CondenseNet [10], which have proven to be effective even
when operating on small devices where computational resources are limited.

In our work, we combine semantic data selection for data steering, adversarial
synthesis for training space expansion, and CondenseNet compression to sparsify
the built Re-ID classifier representation. Our solution operates on single images
during inference, able to perform the Re-ID step in a one-shot paradigm.1.

3 Methodology and Framework Overview

Figure 1 illustrates our methodology pipeline, which follows a generative - dis-
criminative paradigm: (a) training data sets {Xj} of image patches are produced
by a person detector, where each image patch set is either associated to a known
person identity label j ∈ {1, .., N}, or an ‘unknown’ identity label j = 0. (b) An

1
Whilst results are competitive in this setting, discovering and matching segments during infer-
ence [14,15,34,28,20] is not used and could potentially further improve performance.
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image augmentation component then expands on this dataset. This component
consists of (c) a facial filter network F based on multi-view bootstrapping and
OpenPose [25]; and (d) DCGAN [21] processes, whose discriminator networks Dj

are constrained by the semantic selector F to control domain specificity. The set
of DCGANs, namely network pairs (Dj , Gj), are employed to train generator net-
works Gj that synthesise unseen samples x associated with labels j ∈ {0, .., N}.
These generators Gj are then used to produce large sets of samples. We focus on
two types of scenarios: (1) a setup where we synthesize content for each identity
class j individually, and (2) one where only a single ‘unlabeled person’ generator
G is produced using all classes {Xj} as input, with the aim to generate generic
identity content, rather than individual-specific imagery. Sampled output from
generators is (e) unified with the original frame sets and labels, forming the
input data for (f) training a Re-ID CondenseNet R that learns to map sample

image patches xj to ID score vectors sj ∈ R(N+1)
+ over all identity classes. This

yields the sparse inference network R built implicitly compressed in order to
support lightweight inference and deployment via a single network.

3.1 Adversarial Synthesis of Training Information

Adversarial Network Setup - We utilise the generic adversarial training
process of DCGANs [21] and its suggested network design in order to construct a
de-convolutional, generative function Gj per synthesised label class j ∈ {0, .., N}
that after training can produce new images x by sampling from a sparse latent
space Z. Instead, a single ‘generic person’ network G is built in some experiments
utilising all {Xj}. As in all adversarial setups, generative networks G or {Gj}
are paired with discriminative networks D or {Dj}, respectively. The latter map
from images x to an ‘is synthetic’ score v = D(x) > 0, reflecting network support
for x /∈ {Xj}. Essentially, the discriminative networks then learn to differentiate
generator-produced patches (v�) from original patches (v�). However, we add
to this classic dual network setup [16], a third externally trained classifier F
that filters and thereby controls/selects the input to Dj - in our case one that
restricts input to those samples where the presence of faces can be established2.

Facial Filtering - We use the face keypoint detector from OpenPose [25] as
the filter network F to semantically constrain the input to Dj and D. If at least
one such keypoint can be established then face detection is defined as successful,
where formally F (xj ∈ Xj) ∈ [0, 1] is assigned to reflect either the absence (0)
or presence (1) of a face.

Training Process - All networks then engage in an adversarial training pro-
cess utilising Adam [13] to optimise the networks D, {Dj}, and G, {Gj}, respec-
tively, according to the discussion in [21], whilst enforcing the domain semantics
via F . The following detailed process describes this training regime: (1) each D
or Dj is optimised towards minimising the negative log-likelihood −log(D(x))
based on the relevant inputs from {Xj} iff F (xj) = 1, i.e. on original sam-
ples that are found to contain faces. (2) Network optimisation then switches

2
We also modify the initial layer of the DCGAN to deal with a temporal gap of the specified
number of frames. https://github.com/vponcelo/DCGAN-tensorflow.

https://github.com/vponcelo/DCGAN-tensorflow/
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Fig. 2. DCGAN Synthesis Examples. Samples generated by G(z) with (b) or
without (a) semantic controller. (c) 1st row: Examples of generated images from G0

and Gj without semantic controller; 2nd row: with semantic controller; 3rd row: original
samples from X0 and {Xj}. Columns in (c) are, from left to right, ‘unknown’ identity
0 and identities j ∈ {1, ..., N}, respectively.

to back-propagating errors into the entire networks D(G(z)) or Dj(Gj(z)), re-
spectively, where z is sampled from a randomly initialised Gaussian to generate
synthetic content. Consider that whilst the generator weights are adjusted to
minimise the negative log-likelihood −log(D(G(z))), encouraging v to get lower
scores, the discriminator weights are adjusted to maximise it, prompting v to
get higher scores. DCGAN training then proceeds by alternating between (1)
and (2) until acceptable convergence.

3.2 Re-ID Network Training and Compression

Once the synthesis networks G and {Gj} are trained, we sample their output
and combine it with all original training images (withholding 15% per class for
testing) to train R as a CondenseNet [10], optimised via standard stochastic gra-
dient decent with Nestrov momentum. Structurally, R maps from 256×256-sized
RGB-tensors to a score vector over all identity classes. We perform 120 epochs of
training on all layers, where layer-internal grouping is applied to the dense lay-
ers in order to actively structure network pathways by means of clustering [10].
This principle has been proven effective in DenseNets [11], ShuffleNets [30], and
MobileNets [9]. However, CondenseNets extend this approach by introducing a
compression mechanism to remove low-impact connections by discarding unused
weights. As a consequence, the approach produces an ID inference network3

which is implicitly compressed and supports lightweight deployment.

4 Datasets

DukeMTMC-reID - First we confirm the viability of a GAN-driven Con-
denseNet application in a traditional Re-ID setting (e.g. larger cardinality of
identities, outdoor scenes) via the DukeMTMC-reID [22] dataset, which is a
subset of a multi-target, multi-camera pedestrian data corpus. It contains eight
85-minute high-res videos with pedestrian bounding boxes. It covers 1, 812 iden-
tities, where 1, 404 identities appear in more than two cameras and 408 identities
(distractor IDs) appear in only one4.

3
https://github.com/vponcelo/CondenseNet/

4
Evaluation protocol located at: https://github.com/layumi/DukeMTMC-reID evaluation.

https://github.com/vponcelo/CondenseNet/
https://github.com/layumi/DukeMTMC-reID_evaluation
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Market1501 - We also use a large-scale person Re-ID dataset called Mar-
ket1501 [31] collected from 6 cameras covering 1, 501 different identities across
19, 732 images for testing and 12, 936 images for training generated by a de-
formable part model [4].

LIMA - The Long term Identity aware Multi-target multi-camerA tracking
dataset [14], provides us with our main testbed for the approach. In contrast to
previous datasets, image resolution is high enough in this dataset to effectively
apply face detection as a semantic steer. LIMA contains a large set of 188, 427
images of identity-tagged bounding boxes gathered over 13 independent sessions,
where bounding boxes are estimated based on OpenNI NiTE operating on RGB-
D and are grouped into time-stamped, local tracklets. The dataset covers a small
set of 6 individuals filmed in various indoor environments, plus an additional ‘un-
known’ class containing either background noise or multiple people in the same
bounding box. Note that the LIMA dataset is acquired over a significant time
period capturing actual people present in a home (e.g. residents and ‘guests’).
This makes the dataset interesting as a test bed for long-term analysis, where
people’s appearance varies significantly, including changes in clothing. In our ex-
periments, we use a train-test ratio of 12:1 implementing a leave-one-session-out
approach for cross-validation in order to probe how well performance generalises
to different acquisition days.

5 Experiments and Results

We perform an extensive system analysis by applying the proposed pipeline
mainly to the LIMA dataset. We define as the LIMA baseline the best so-far
reported micro precision metric on the dataset achieved by a hybrid M2&ME
approach given in [14] - that is via tracking by recognition-enhanced constrained
clustering with multiple enrolment. This approach assigns identities to frames
where the accuracy of picking the correct identity as the top-ranking estimate is
reported. Against this, we evaluate performance metrics for our approach judging
either the performance over all ground truth labels j, including the ‘unknown
content’ class (ALL), that is j ∈ {0, ..., N}, or only for known identity ground-
truth (p-ID), that is j ∈ {1, ..., N}. We use two metrics: prec@1 as the rank-
one precision, i.e. the accuracy of selecting the correct identity for test frames
according to the highest class score produced by the final Re-ID CondenseNet
R, and mAP as mean Average Precision over all considered classes. Table 1
provides an overview of the results.

Deep CondenseNet without Augmentation (R only) - The base-
line (Table 1, row 1) is first compared to results obtained when training Con-
denseNet (R) on original data only (Table 1, row 2). This deep compressed
network outperforms the baseline ALL prec@1 by 2.88%, in particular gener-
alising better for cases of significant appearance change such as wearing different
clothes over the session (e.g. without jacket and wearing a jacket afterwards. The
p-ID mAP results (i.e. discarding the ‘unknown’ class) at 96.28% show that
removing distracting content, i.e. manual semantic control during the test proce-
dure, can produce scenarios of enhanced performance over filtered test subsets.
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Table 1. Results for LIMA - Top rank precision (prec@1) and mean Average
Precision (mAP) for baseline (row 1), non-semantically controlled deep CondenseNet
approaches (rows 2-4), and various forms of semantic control (rows 5-7). Note improve-
ments across all metrics when utilising: compressed deep learning (row 2), augmentation
(row 3), and semantically selective filtering (rows 6-7).

No Semantic Control ALL prec@1 p-ID prec@1 ALL mAP p-ID mAP

1: Baseline (M2&ME) [14] 89.1 - - -

2: No Augmentation (R) 91.98 93.49 90.90 96.28

3: Augmentation 24kG→ R 92.43 94.27 91 96.95

4: Augmentation 48kG→ R 91.74 93.48 90.61 96.54

Semantic Control via F ALL prec@1 p-ID prec@1 ALL mAP p-ID mAP

5: No Augmentation (FR) 82.02 92.14 72.90 95.48

6: Augmentation F322kG→ R 92.58 94.57 91.14 97.02

7: (24kG0+F24kGj)→ R 92.44 94.37 90.96 97.04

We will now investigate how semantic control can be encoded via externally
trained networks applied during training.

Direct Semantic Control (FR) - Simply introducing a semantic controller
F to face-filter the input of R is, however, counter-productive and reduces per-
formance significantly across all metrics (Table 1, row 5). Restricting R to train
on only 39% of the input this way withholds critical identity information.

Augmentation via DCGANs (G) - Instead of restricting training in-
put to the Re-ID network R, we therefore analyse how Re-ID performance is
affected when semantic control is applied to generic DCGAN-synthesis via G
of a cross-identity person class as suggested in [33]. Figure 2 shows examples
of generated images and how the semantic controller affects the synthesis ap-
pearance. Augmentation of training data with 24k synthesised samples without
semantic control (Table 1, row 3) improves performance slightly across all met-
rics, confirming benefits discussed in more detail in [33]. Table 2 confirms that
applying such DCGAN synthesis together with CondenseNet compression to the
DukeMTMC-reID dataset produce results comparable to [31]. Note that whilst
the large deep ResNet50+LSRO [33] approach outperforms our compressed net-
work significantly (Table 2, row 6), this comes at a cost of increasing the pa-
rameter cardinality by about an order of magnitude5. Moreover, non-controlled
synthesis is generally limited. Indeed, on LIMA no further improvements can be
made by scaling up synthesis beyond 24k, whereby performance drops slightly
across all metrics and overfitting to the synthetised data can be observed (Ta-
ble 1, row 4). We now introduce semantic control to the input of augmentation
and observe that the scaling-up limit can be lifted. Diminishing returns take over
at levels above 300k though (i.e. 54% of synthesis w.r.t. original training data).
We report results when synthesising 322k of imagery via G, improving results
for all metrics (Table 1, row 6). We note that these improvements are achieved
by synthesising distractors rather than individual-specific augmentations.

5
Require approximately 8× fewer parameters and operations to achieve comparable accuracy w.r.t.
other dense nets (i.e. 600 million less operations to perform inference on a single image) [10].
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Table 2. Results for DukeMTMC-reID - Top rank precision (prec@1) for classi-
fication and Single-Query (S-Q) performance. Our results outperform [31] when using
augmentation (row 4), or using Market1501 as synthesis input (row 5). However, the
performance of the 8× larger ResNet50+LSRO [33] cannot be achieved in our setting
of compression for lightweight deployment.

Method / No Semantic Control prec@1 prec@5 mAP CMC@1 S-Q mAP S-Q

1: Baseline BoW + KISSME [31] - - - 25.13 12.17

2: Baseline LOMO + XQDA [31] - - - 30.75 17.04

3: No Augmentation (R) 87.70 95.54 87.79 29.04 15.99

4: Augmentation 24kG→ R 88.08 95.73 88.26 36.45 21.11

5: Transfer 24k(Market1501)G→ R 88.84 95.82 88.64 35.95 20.6

6: ResNet50+LSRO [33] (8x larger) - - - 67.68 47.13

Individual-specific Augmentation (G0 + Gj) - To explore class-specific
augmentation we train an entire set of DCGANs, i.e. produce generators Gj and
G0, respectively as specific identity and non-identity synthesis networks, and ap-
ply semantic control F to the identity classes j ∈ {1, ..., N}. We observe that
when balancing the synthesis of training imagery across all classes equally only
slightly improves on p-ID mAP, whilst other measures cannot be advanced
(Table 1, row 7). Figure 3 provides further result visualisations. The limited
improvements of this approach compared to non-identity-specific training (de-
spite synthesis of overall more training data) suggest that, for the LIMA setup
at least, person individuality can indeed be encoded by augmentation-supported
modelling of a large, generic ‘person’ class against a more limited, non-augmented
representation of individuals. Furthermore, experiments on the most challenging
LIMA sessions demonstrate that the pre-trained generator G can generalize at
re-training individual-specific generators G0 and Gj so as to reduce training cost
of DCGAN indvidual-specific augmentation.

Fig. 3. Some Results as Confusion Matrices. Columns from left to right cor-
respond to the experimental settings grouped by the presence of semantic selection,
according to Table 1 rows 2-4 and 5-7, respectively.

6 Conclusion

We introduced a deep person Re-ID approach that brought together semanti-
cally selective data augmentation with clustering-based network compression to
produce light and fast inference networks. In particular, we showed that aug-
mentation via sampling from a DCGAN, whose discriminator is constrained
by a semantic face detector, can outperform the state-of-the-art on the LIMA
dataset for long-term monitoring in indoor living environments. To explore the
applicability of our framework without face detection in outdoor scenarios, we
also considered well-known datasets for person Re-ID aimed at people matching,
achieving competitive performance on the DukeMTMC-reID dataset.
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nition by evolved dynamic subgestures. In: Proceedings of the British Machine
Vision Conference (BMVC). pp. 129.1–129.13 (2015)

21. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep
convolutional generative adversarial networks. Proceedings of the International
Conference on Learning Representations (2015)

22. Ristani, E., Solera, F., Zou, R.S., Cucchiara, R., Tomasi, C.: Performance measures
and a data set for multi-target, multi-camera tracking. ECCV workshops (2016)

23. Sadri, F.: Ambient intelligence: A survey. ACM Comput. Surv. 43(4), 36:1–36:66
(2011)

24. Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., Webb, R.: Learning
from simulated and unsupervised images through adversarial training. Proceedings
of the Computer Vision and Pattern Recognition Conference pp. 2107–2116 (2017)

25. Simon, T., Joo, H., Matthews, I., Sheikh, Y.: Hand keypoint detection in single
images using multiview bootstrapping. In: Proceedings of the Computer Vision
and Pattern Recognition Conference (CVPR) (2017)

26. Takemura, N., Makihara, Y., Muramatsu, D., Echigo, T., Yagi, Y.: Multi-view
large population gait dataset and its performance evaluation for cross-view gait
recognition. IPSJ Transactions on Computer Vision and Applications 10(1), 4
(2018)

27. Twomey, N., Diethe, T., Kull, M., Song, H., Camplani, M., Hannuna, S., Fafoutis,
X., Zhu, N., Woznowski, P., Flach, P., Craddock, I.: The SPHERE challenge: Ac-
tivity recognition with multimodal sensor data. preprint arXiv:1603.00797 (2016)

28. Wu, L., Wang, Y., Li, X., Gao, J.: What-and-where to match: Deep spatially mul-
tiplicative integration networks for person re-identification. Pattern Recognition
76, 727 – 738 (2018)

29. Yu, S.I., Meng, D., Zuo, W., Hauptmann, A.: The solution path algorithm for
identity-aware multi-object tracking. In: The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2016)

30. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely efficient convolu-
tional neural network for mobile devices. CoRR abs/1707.01083 (2017)

31. Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-
identification: A benchmark. In: 2015 IEEE International Conference on Computer
Vision (ICCV). pp. 1116–1124 (2015)

32. Zheng, L., Yang, Y., Hauptmann, A.G.: Person re-identification: Past, present and
future. arXiv preprint arXiv:1610.02984 (2016)

33. Zheng, Z., Zheng, L., Yang, Y.: Unlabeled samples generated by gan improve the
person re-identification baseline in vitro. In: Proceedings of the IEEE International
Conference on Computer Vision. pp. 3754–3762 (2017)

34. Zhou, S., Wang, J., Meng, D., Xin, X., Li, Y., Gong, Y., Zheng, N.: Deep self-paced
learning for person re-identification. Pattern Recognition 76, 739 – 751 (2018)


	Semantically Selective Augmentation for Deep Compact Person Re-Identification

