508 research outputs found

    Optimal Framework for Level Based Access Control for VM Auditing on Cloud

    Get PDF
    The growth in the cloud computing have motivated and enable lot of application developer to deploy the applications on cloud. The major challenge of hosting on cloud is the service provider or the application provider must comply to a good number of rules. These compliance reports are time to time validated and checked by external auditors. The auditing process for the cloud services are critical and the access controls must be enabled. Due to the higher complexity and less flexibility of the virtual machines, most of the cases this access control mechanism is compromised. This work proposes four algorithms to identify and enhance the LBAC mechanism for cloud services with access updates based on time variant characteristics analysis and predictive analysis with selective cryptographic methods. The proposed model produces significantly improved results to overcome three major issues in the cloud service management as selective LBAC, static privileges and open access control for the auditors.  &nbsp

    Cloud monitoring data challenges: A systematic review

    Full text link
    © Springer International Publishing AG 2016. Organizations need to continuously monitor, source and process large amount of operational data for optimizing the cloud computing environment. The research problem is: what are cloud monitoring data challenges – in particular virtual CPU monitoring data? This paper adopts a Systematic Literature Review (SLR) approach to identify and report cloud monitoring data challenges. SLR approach was applied to initially identify a large set of 1861 papers. Finally, 24 of 1861 relevant papers were selected and reviewed to identify the five major challenges of cloud monitoring data: monitoring technology, virtualization technology, energy, availability and performance. The results of this review are expected to help researchers and practitioners to understand cloud computing data challenges and develop innovative techniques and strategies to deal with these challenges

    Service Quality Assessment for Cloud-based Distributed Data Services

    Full text link
    The issue of less-than-100% reliability and trust-worthiness of third-party controlled cloud components (e.g., IaaS and SaaS components from different vendors) may lead to laxity in the QoS guarantees offered by a service-support system S to various applications. An example of S is a replicated data service to handle customer queries with fault-tolerance and performance goals. QoS laxity (i.e., SLA violations) may be inadvertent: say, due to the inability of system designers to model the impact of sub-system behaviors onto a deliverable QoS. Sometimes, QoS laxity may even be intentional: say, to reap revenue-oriented benefits by cheating on resource allocations and/or excessive statistical-sharing of system resources (e.g., VM cycles, number of servers). Our goal is to assess how well the internal mechanisms of S are geared to offer a required level of service to the applications. We use computational models of S to determine the optimal feasible resource schedules and verify how close is the actual system behavior to a model-computed \u27gold-standard\u27. Our QoS assessment methods allow comparing different service vendors (possibly with different business policies) in terms of canonical properties: such as elasticity, linearity, isolation, and fairness (analogical to a comparative rating of restaurants). Case studies of cloud-based distributed applications are described to illustrate our QoS assessment methods. Specific systems studied in the thesis are: i) replicated data services where the servers may be hosted on multiple data-centers for fault-tolerance and performance reasons; and ii) content delivery networks to geographically distributed clients where the content data caches may reside on different data-centers. The methods studied in the thesis are useful in various contexts of QoS management and self-configurations in large-scale cloud-based distributed systems that are inherently complex due to size, diversity, and environment dynamicity

    Design and Development of an Energy Efficient Multimedia Cloud Data Center with Minimal SLA Violation

    Get PDF
    Multimedia computing (MC) is rising as a nascent computing paradigm to process multimedia applications and provide efficient multimedia cloud services with optimal Quality of Service (QoS) to the multimedia cloud users. But, the growing popularity of MC is affecting the climate. Because multimedia cloud data centers consume an enormous amount of energy to provide services, it harms the environment due to carbon dioxide emissions. Virtual machine (VM) migration can effectively address this issue; it reduces the energy consumption of multimedia cloud data centers. Due to the reduction of Energy Consumption (EC), the Service Level Agreement violation (SLAV) may increase. An efficient VM selection plays a crucial role in maintaining the stability between EC and SLAV. This work highlights a novel VM selection policy based on identifying the Maximum value among the differences of the Sum of Squares Utilization Rate (MdSSUR) parameter to reduce the EC of multimedia cloud data centers with minimal SLAV. The proposed MdSSUR VM selection policy has been evaluated using real workload traces in CloudSim. The simulation result of the proposed MdSSUR VM selection policy demonstrates the rate of improvements of the EC, the number of VM migrations, and the SLAV by 28.37%, 89.47%, and 79.14%, respectively

    SECURITY CHALLENGES IN CLOUD COMPUTING

    Get PDF

    Security in Cloud Computing: Evaluation and Integration

    Get PDF
    Au cours de la derniĂšre dĂ©cennie, le paradigme du Cloud Computing a rĂ©volutionnĂ© la maniĂšre dont nous percevons les services de la Technologie de l’Information (TI). Celui-ci nous a donnĂ© l’opportunitĂ© de rĂ©pondre Ă  la demande constamment croissante liĂ©e aux besoins informatiques des usagers en introduisant la notion d’externalisation des services et des donnĂ©es. Les consommateurs du Cloud ont gĂ©nĂ©ralement accĂšs, sur demande, Ă  un large Ă©ventail bien rĂ©parti d’infrastructures de TI offrant une plĂ©thore de services. Ils sont Ă  mĂȘme de configurer dynamiquement les ressources du Cloud en fonction des exigences de leurs applications, sans toutefois devenir partie intĂ©grante de l’infrastructure du Cloud. Cela leur permet d’atteindre un degrĂ© optimal d’utilisation des ressources tout en rĂ©duisant leurs coĂ»ts d’investissement en TI. Toutefois, la migration des services au Cloud intensifie malgrĂ© elle les menaces existantes Ă  la sĂ©curitĂ© des TI et en crĂ©e de nouvelles qui sont intrinsĂšques Ă  l’architecture du Cloud Computing. C’est pourquoi il existe un rĂ©el besoin d’évaluation des risques liĂ©s Ă  la sĂ©curitĂ© du Cloud durant le procĂ©dĂ© de la sĂ©lection et du dĂ©ploiement des services. Au cours des derniĂšres annĂ©es, l’impact d’une efficace gestion de la satisfaction des besoins en sĂ©curitĂ© des services a Ă©tĂ© pris avec un sĂ©rieux croissant de la part des fournisseurs et des consommateurs. Toutefois, l’intĂ©gration rĂ©ussie de l’élĂ©ment de sĂ©curitĂ© dans les opĂ©rations de la gestion des ressources du Cloud ne requiert pas seulement une recherche mĂ©thodique, mais aussi une modĂ©lisation mĂ©ticuleuse des exigences du Cloud en termes de sĂ©curitĂ©. C’est en considĂ©rant ces facteurs que nous adressons dans cette thĂšse les dĂ©fis liĂ©s Ă  l’évaluation de la sĂ©curitĂ© et Ă  son intĂ©gration dans les environnements indĂ©pendants et interconnectĂ©s du Cloud Computing. D’une part, nous sommes motivĂ©s Ă  offrir aux consommateurs du Cloud un ensemble de mĂ©thodes qui leur permettront d’optimiser la sĂ©curitĂ© de leurs services et, d’autre part, nous offrons aux fournisseurs un Ă©ventail de stratĂ©gies qui leur permettront de mieux sĂ©curiser leurs services d’hĂ©bergements du Cloud. L’originalitĂ© de cette thĂšse porte sur deux aspects : 1) la description innovatrice des exigences des applications du Cloud relativement Ă  la sĂ©curitĂ© ; et 2) la conception de modĂšles mathĂ©matiques rigoureux qui intĂšgrent le facteur de sĂ©curitĂ© dans les problĂšmes traditionnels du dĂ©ploiement des applications, d’approvisionnement des ressources et de la gestion de la charge de travail au coeur des infrastructures actuelles du Cloud Computing. Le travail au sein de cette thĂšse est rĂ©alisĂ© en trois phases.----------ABSTRACT: Over the past decade, the Cloud Computing paradigm has revolutionized the way we envision IT services. It has provided an opportunity to respond to the ever increasing computing needs of the users by introducing the notion of service and data outsourcing. Cloud consumers usually have online and on-demand access to a large and distributed IT infrastructure providing a plethora of services. They can dynamically configure and scale the Cloud resources according to the requirements of their applications without becoming part of the Cloud infrastructure, which allows them to reduce their IT investment cost and achieve optimal resource utilization. However, the migration of services to the Cloud increases the vulnerability to existing IT security threats and creates new ones that are intrinsic to the Cloud Computing architecture, thus the need for a thorough assessment of Cloud security risks during the process of service selection and deployment. Recently, the impact of effective management of service security satisfaction has been taken with greater seriousness by the Cloud Service Providers (CSP) and stakeholders. Nevertheless, the successful integration of the security element into the Cloud resource management operations does not only require methodical research, but also necessitates the meticulous modeling of the Cloud security requirements. To this end, we address throughout this thesis the challenges to security evaluation and integration in independent and interconnected Cloud Computing environments. We are interested in providing the Cloud consumers with a set of methods that allow them to optimize the security of their services and the CSPs with a set of strategies that enable them to provide security-aware Cloud-based service hosting. The originality of this thesis lies within two aspects: 1) the innovative description of the Cloud applications’ security requirements, which paved the way for an effective quantification and evaluation of the security of Cloud infrastructures; and 2) the design of rigorous mathematical models that integrate the security factor into the traditional problems of application deployment, resource provisioning, and workload management within current Cloud Computing infrastructures. The work in this thesis is carried out in three phases
    • 

    corecore