37 research outputs found

    Contributions à la sonification d’image et à la classification de sons

    Full text link
    L’objectif de cette thĂšse est d’étudier d’une part le problĂšme de sonification d’image et de le solutionner Ă  travers de nouveaux modĂšles de correspondance entre domaines visuel et sonore. D’autre part d’étudier le problĂšme de la classification de son et de le rĂ©soudre avec des mĂ©thodes ayant fait leurs preuves dans le domaine de la reconnaissance d’image. La sonification d’image est la traduction de donnĂ©es d’image (forme, couleur, texture, objet) en sons. Il est utilisĂ© dans les domaines de l’assistance visuelle et de l’accessibilitĂ© des images pour les personnes malvoyantes. En raison de sa complexitĂ©, un systĂšme de sonification d’image qui traduit correctement les donnĂ©es d’image en son de maniĂšre intuitive n’est pas facile Ă  concevoir. Notre premiĂšre contribution est de proposer un nouveau systĂšme de sonification d’image de bas-niveau qui utilise une approche hiĂ©rarchique basĂ©e sur les caractĂ©ristiques visuelles. Il traduit, Ă  l’aide de notes musicales, la plupart des propriĂ©tĂ©s d’une image (couleur, gradient, contour, texture, rĂ©gion) vers le domaine audio, de maniĂšre trĂšs prĂ©visible et donc est facilement ensuite dĂ©codable par l’ĂȘtre humain. Notre deuxiĂšme contribution est une application Android de sonification de haut niveau qui est complĂ©mentaire Ă  notre premiĂšre contribution car elle implĂ©mente la traduction des objets et du contenu sĂ©mantique de l’image. Il propose Ă©galement une base de donnĂ©es pour la sonification d’image. Finalement dans le domaine de l’audio, notre derniĂšre contribution gĂ©nĂ©ralise le motif binaire local (LBP) Ă  1D et le combine avec des descripteurs audio pour faire de la classification de sons environnementaux. La mĂ©thode proposĂ©e surpasse les rĂ©sultats des mĂ©thodes qui utilisent des algorithmes d’apprentissage automatique classiques et est plus rapide que toutes les mĂ©thodes de rĂ©seau neuronal convolutif. Il reprĂ©sente un meilleur choix lorsqu’il y a une raretĂ© des donnĂ©es ou une puissance de calcul minimale.The objective of this thesis is to study on the one hand the problem of image sonification and to solve it through new models of mapping between visual and sound domains. On the other hand, to study the problem of sound classification and to solve it with methods which have proven track record in the field of image recognition. Image sonification is the translation of image data (shape, color, texture, objects) into sounds. It is used in vision assistance and image accessibility domains for visual impaired people. Due to its complexity, an image sonification system that properly conveys the image data to sound in an intuitive way is not easy to design. Our first contribution is to propose a new low-level image sonification system which uses an hierarchical visual feature-based approach to translate, usingmusical notes, most of the properties of an image (color, gradient, edge, texture, region) to the audio domain, in a very predictable way in which is then easily decodable by the human being. Our second contribution is a high-level sonification Android application which is complementary to our first contribution because it implements the translation to the audio domain of the objects and the semantic content of an image. It also proposes a dataset for an image sonification. Finally, in the audio domain, our third contribution generalizes the Local Binary Pattern (LBP) to 1D and combines it with audio features for an environmental sound classification task. The proposed method outperforms the results of methods that uses handcrafted features with classical machine learning algorithms and is faster than any convolutional neural network methods. It represents a better choice when there is data scarcity or minimal computing power

    Multibiometric security in wireless communication systems

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 05/08/2010.This thesis has aimed to explore an application of Multibiometrics to secured wireless communications. The medium of study for this purpose included Wi-Fi, 3G, and WiMAX, over which simulations and experimental studies were carried out to assess the performance. In specific, restriction of access to authorized users only is provided by a technique referred to hereafter as multibiometric cryptosystem. In brief, the system is built upon a complete challenge/response methodology in order to obtain a high level of security on the basis of user identification by fingerprint and further confirmation by verification of the user through text-dependent speaker recognition. First is the enrolment phase by which the database of watermarked fingerprints with memorable texts along with the voice features, based on the same texts, is created by sending them to the server through wireless channel. Later is the verification stage at which claimed users, ones who claim are genuine, are verified against the database, and it consists of five steps. Initially faced by the identification level, one is asked to first present one’s fingerprint and a memorable word, former is watermarked into latter, in order for system to authenticate the fingerprint and verify the validity of it by retrieving the challenge for accepted user. The following three steps then involve speaker recognition including the user responding to the challenge by text-dependent voice, server authenticating the response, and finally server accepting/rejecting the user. In order to implement fingerprint watermarking, i.e. incorporating the memorable word as a watermark message into the fingerprint image, an algorithm of five steps has been developed. The first three novel steps having to do with the fingerprint image enhancement (CLAHE with 'Clip Limit', standard deviation analysis and sliding neighborhood) have been followed with further two steps for embedding, and extracting the watermark into the enhanced fingerprint image utilising Discrete Wavelet Transform (DWT). In the speaker recognition stage, the limitations of this technique in wireless communication have been addressed by sending voice feature (cepstral coefficients) instead of raw sample. This scheme is to reap the advantages of reducing the transmission time and dependency of the data on communication channel, together with no loss of packet. Finally, the obtained results have verified the claims

    Speech Enhancement with Improved Deep Learning Methods

    Get PDF
    In real-world environments, speech signals are often corrupted by ambient noises during their acquisition, leading to degradation of quality and intelligibility of the speech for a listener. As one of the central topics in the speech processing area, speech enhancement aims to recover clean speech from such a noisy mixture. Many traditional speech enhancement methods designed based on statistical signal processing have been proposed and widely used in the past. However, the performance of these methods was limited and thus failed in sophisticated acoustic scenarios. Over the last decade, deep learning as a primary tool to develop data-driven information systems has led to revolutionary advances in speech enhancement. In this context, speech enhancement is treated as a supervised learning problem, which does not suffer from issues faced by traditional methods. This supervised learning problem has three main components: input features, learning machine, and training target. In this thesis, various deep learning architectures and methods are developed to deal with the current limitations of these three components. First, we propose a serial hybrid neural network model integrating a new low-complexity fully-convolutional convolutional neural network (CNN) and a long short-term memory (LSTM) network to estimate a phase-sensitive mask for speech enhancement. Instead of using traditional acoustic features as the input of the model, a CNN is employed to automatically extract sophisticated speech features that can maximize the performance of a model. Then, an LSTM network is chosen as the learning machine to model strong temporal dynamics of speech. The model is designed to take full advantage of the temporal dependencies and spectral correlations present in the input speech signal while keeping the model complexity low. Also, an attention technique is embedded to recalibrate the useful CNN-extracted features adaptively. Through extensive comparative experiments, we show that the proposed model significantly outperforms some known neural network-based speech enhancement methods in the presence of highly non-stationary noises, while it exhibits a relatively small number of model parameters compared to some commonly employed DNN-based methods. Most of the available approaches for speech enhancement using deep neural networks face a number of limitations: they do not exploit the information contained in the phase spectrum, while their high computational complexity and memory requirements make them unsuited for real-time applications. Hence, a new phase-aware composite deep neural network is proposed to address these challenges. Specifically, magnitude processing with spectral mask and phase reconstruction using phase derivative are proposed as key subtasks of the new network to simultaneously enhance the magnitude and phase spectra. Besides, the neural network is meticulously designed to take advantage of strong temporal and spectral dependencies of speech, while its components perform independently and in parallel to speed up the computation. The advantages of the proposed PACDNN model over some well-known DNN-based SE methods are demonstrated through extensive comparative experiments. Considering that some acoustic scenarios could be better handled using a number of low-complexity sub-DNNs, each specifically designed to perform a particular task, we propose another very low complexity and fully convolutional framework, performing speech enhancement in short-time modified discrete cosine transform (STMDCT) domain. This framework is made up of two main stages: classification and mapping. In the former stage, a CNN-based network is proposed to classify the input speech based on its utterance-level attributes, i.e., signal-to-noise ratio and gender. In the latter stage, four well-trained CNNs specialized for different specific and simple tasks transform the STMDCT of noisy input speech to the clean one. Since this framework is designed to perform in the STMDCT domain, there is no need to deal with the phase information, i.e., no phase-related computation is required. Moreover, the training target length is only one-half of those in the previous chapters, leading to lower computational complexity and less demand for the mapping CNNs. Although there are multiple branches in the model, only one of the expert CNNs is active for each time, i.e., the computational burden is related only to a single branch at anytime. Also, the mapping CNNs are fully convolutional, and their computations are performed in parallel, thus reducing the computational time. Moreover, this proposed framework reduces the latency by %55 compared to the models in the previous chapters. Through extensive experimental studies, it is shown that the MBSE framework not only gives a superior speech enhancement performance but also has a lower complexity compared to some existing deep learning-based methods

    An investigation of the utility of monaural sound source separation via nonnegative matrix factorization applied to acoustic echo and reverberation mitigation for hands-free telephony

    Get PDF
    In this thesis we investigate the applicability and utility of Monaural Sound Source Separation (MSSS) via Nonnegative Matrix Factorization (NMF) for various problems related to audio for hands-free telephony. We first investigate MSSS via NMF as an alternative acoustic echo reduction approach to existing approaches such as Acoustic Echo Cancellation (AEC). To this end, we present the single-channel acoustic echo problem as an MSSS problem, in which the objective is to extract the users signal from a mixture also containing acoustic echo and noise. To perform separation, NMF is used to decompose the near-end microphone signal onto the union of two nonnegative bases in the magnitude Short Time Fourier Transform domain. One of these bases is for the spectral energy of the acoustic echo signal, and is formed from the in- coming far-end user’s speech, while the other basis is for the spectral energy of the near-end speaker, and is trained with speech data a priori. In comparison to AEC, the speaker extraction approach obviates Double-Talk Detection (DTD), and is demonstrated to attain its maximal echo mitigation performance immediately upon initiation and to maintain that performance during and after room changes for similar computational requirements. Speaker extraction is also shown to introduce distortion of the near-end speech signal during double-talk, which is quantified by means of a speech distortion measure and compared to that of AEC. Subsequently, we address Double-Talk Detection (DTD) for block-based AEC algorithms. We propose a novel block-based DTD algorithm that uses the available signals and the estimate of the echo signal that is produced by NMF-based speaker extraction to compute a suitably normalized correlation-based decision variable, which is compared to a fixed threshold to decide on doubletalk. Using a standard evaluation technique, the proposed algorithm is shown to have comparable detection performance to an existing conventional block-based DTD algorithm. It is also demonstrated to inherit the room change insensitivity of speaker extraction, with the proposed DTD algorithm generating minimal false doubletalk indications upon initiation and in response to room changes in comparison to the existing conventional DTD. We also show that this property allows its paired AEC to converge at a rate close to the optimum. Another focus of this thesis is the problem of inverting a single measurement of a non- minimum phase Room Impulse Response (RIR). We describe the process by which percep- tually detrimental all-pass phase distortion arises in reverberant speech filtered by the inverse of the minimum phase component of the RIR; in short, such distortion arises from inverting the magnitude response of the high-Q maximum phase zeros of the RIR. We then propose two novel partial inversion schemes that precisely mitigate this distortion. One of these schemes employs NMF-based MSSS to separate the all-pass phase distortion from the target speech in the magnitude STFT domain, while the other approach modifies the inverse minimum phase filter such that the magnitude response of the maximum phase zeros of the RIR is not fully compensated. Subjective listening tests reveal that the proposed schemes generally produce better quality output speech than a comparable inversion technique

    An investigation of the utility of monaural sound source separation via nonnegative matrix factorization applied to acoustic echo and reverberation mitigation for hands-free telephony

    Get PDF
    In this thesis we investigate the applicability and utility of Monaural Sound Source Separation (MSSS) via Nonnegative Matrix Factorization (NMF) for various problems related to audio for hands-free telephony. We first investigate MSSS via NMF as an alternative acoustic echo reduction approach to existing approaches such as Acoustic Echo Cancellation (AEC). To this end, we present the single-channel acoustic echo problem as an MSSS problem, in which the objective is to extract the users signal from a mixture also containing acoustic echo and noise. To perform separation, NMF is used to decompose the near-end microphone signal onto the union of two nonnegative bases in the magnitude Short Time Fourier Transform domain. One of these bases is for the spectral energy of the acoustic echo signal, and is formed from the in- coming far-end user’s speech, while the other basis is for the spectral energy of the near-end speaker, and is trained with speech data a priori. In comparison to AEC, the speaker extraction approach obviates Double-Talk Detection (DTD), and is demonstrated to attain its maximal echo mitigation performance immediately upon initiation and to maintain that performance during and after room changes for similar computational requirements. Speaker extraction is also shown to introduce distortion of the near-end speech signal during double-talk, which is quantified by means of a speech distortion measure and compared to that of AEC. Subsequently, we address Double-Talk Detection (DTD) for block-based AEC algorithms. We propose a novel block-based DTD algorithm that uses the available signals and the estimate of the echo signal that is produced by NMF-based speaker extraction to compute a suitably normalized correlation-based decision variable, which is compared to a fixed threshold to decide on doubletalk. Using a standard evaluation technique, the proposed algorithm is shown to have comparable detection performance to an existing conventional block-based DTD algorithm. It is also demonstrated to inherit the room change insensitivity of speaker extraction, with the proposed DTD algorithm generating minimal false doubletalk indications upon initiation and in response to room changes in comparison to the existing conventional DTD. We also show that this property allows its paired AEC to converge at a rate close to the optimum. Another focus of this thesis is the problem of inverting a single measurement of a non- minimum phase Room Impulse Response (RIR). We describe the process by which percep- tually detrimental all-pass phase distortion arises in reverberant speech filtered by the inverse of the minimum phase component of the RIR; in short, such distortion arises from inverting the magnitude response of the high-Q maximum phase zeros of the RIR. We then propose two novel partial inversion schemes that precisely mitigate this distortion. One of these schemes employs NMF-based MSSS to separate the all-pass phase distortion from the target speech in the magnitude STFT domain, while the other approach modifies the inverse minimum phase filter such that the magnitude response of the maximum phase zeros of the RIR is not fully compensated. Subjective listening tests reveal that the proposed schemes generally produce better quality output speech than a comparable inversion technique

    Building a Strong Undergraduate Research Culture in African Universities

    Get PDF
    Africa had a late start in the race to setting up and obtaining universities with research quality fundamentals. According to Mamdani [5], the first colonial universities were few and far between: Makerere in East Africa, Ibadan and Legon in West Africa. This last place in the race, compared to other continents, has had tremendous implications in the development plans for the continent. For Africa, the race has been difficult from a late start to an insurmountable litany of problems that include difficulty in equipment acquisition, lack of capacity, limited research and development resources and lack of investments in local universities. In fact most of these universities are very recent with many less than 50 years in business except a few. To help reduce the labor costs incurred by the colonial masters of shipping Europeans to Africa to do mere clerical jobs, they started training ―workshops‖ calling them technical or business colleges. According to Mamdani, meeting colonial needs was to be achieved while avoiding the ―Indian disease‖ in Africa -- that is, the development of an educated middle class, a group most likely to carry the virus of nationalism. Upon independence, most of these ―workshops‖ were turned into national ―universities‖, but with no clear role in national development. These national ―universities‖ were catering for children of the new African political elites. Through the seventies and eighties, most African universities were still without development agendas and were still doing business as usual. Meanwhile, governments strapped with lack of money saw no need of putting more scarce resources into big white elephants. By mid-eighties, even the UN and IMF were calling for a limit on funding African universities. In today‘s African university, the traditional curiosity driven research model has been replaced by a market-driven model dominated by a consultancy culture according to Mamdani (Mamdani, Mail and Guardian Online). The prevailing research culture as intellectual life in universities has been reduced to bare-bones classroom activity, seminars and workshops have migrated to hotels and workshop attendance going with transport allowances and per diems (Mamdani, Mail and Guardian Online). There is need to remedy this situation and that is the focus of this paper

    An object-based approach to retrieval of image and video content

    Get PDF
    Promising new directions have been opened up for content-based visual retrieval in recent years. Object-based retrieval which allows users to manipulate video objects as part of their searching and browsing interaction, is one of these. It is the purpose of this thesis to constitute itself as a part of a larger stream of research that investigates visual objects as a possible approach to advancing the use of semantics in content-based visual retrieval. The notion of using objects in video retrieval has been seen as desirable for some years, but only very recently has technology started to allow even very basic object-location functions on video. The main hurdles to greater use of objects in video retrieval are the overhead of object segmentation on large amounts of video and the issue of whether objects can actually be used efficiently for multimedia retrieval. Despite this, there are already some examples of work which supports retrieval based on video objects. This thesis investigates an object-based approach to content-based visual retrieval. The main research contributions of this work are a study of shot boundary detection on compressed domain video where a fast detection approach is proposed and evaluated, and a study on the use of objects in interactive image retrieval. An object-based retrieval framework is developed in order to investigate object-based retrieval on a corpus of natural image and video. This framework contains the entire processing chain required to analyse, index and interactively retrieve images and video via object-to-object matching. The experimental results indicate that object-based searching consistently outperforms image-based search using low-level features. This result goes some way towards validating the approach of allowing users to select objects as a basis for searching video archives when the information need dictates it as appropriate

    Predicting room acoustical behavior with the ODEON computer model

    Get PDF

    Multibiometric security in wireless communication systems

    Get PDF
    This thesis has aimed to explore an application of Multibiometrics to secured wireless communications. The medium of study for this purpose included Wi-Fi, 3G, and WiMAX, over which simulations and experimental studies were carried out to assess the performance. In specific, restriction of access to authorized users only is provided by a technique referred to hereafter as multibiometric cryptosystem. In brief, the system is built upon a complete challenge/response methodology in order to obtain a high level of security on the basis of user identification by fingerprint and further confirmation by verification of the user through text-dependent speaker recognition. First is the enrolment phase by which the database of watermarked fingerprints with memorable texts along with the voice features, based on the same texts, is created by sending them to the server through wireless channel. Later is the verification stage at which claimed users, ones who claim are genuine, are verified against the database, and it consists of five steps. Initially faced by the identification level, one is asked to first present one’s fingerprint and a memorable word, former is watermarked into latter, in order for system to authenticate the fingerprint and verify the validity of it by retrieving the challenge for accepted user. The following three steps then involve speaker recognition including the user responding to the challenge by text-dependent voice, server authenticating the response, and finally server accepting/rejecting the user. In order to implement fingerprint watermarking, i.e. incorporating the memorable word as a watermark message into the fingerprint image, an algorithm of five steps has been developed. The first three novel steps having to do with the fingerprint image enhancement (CLAHE with 'Clip Limit', standard deviation analysis and sliding neighborhood) have been followed with further two steps for embedding, and extracting the watermark into the enhanced fingerprint image utilising Discrete Wavelet Transform (DWT). In the speaker recognition stage, the limitations of this technique in wireless communication have been addressed by sending voice feature (cepstral coefficients) instead of raw sample. This scheme is to reap the advantages of reducing the transmission time and dependency of the data on communication channel, together with no loss of packet. Finally, the obtained results have verified the claims.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore