20,841 research outputs found

    Learning Representations of Emotional Speech with Deep Convolutional Generative Adversarial Networks

    Full text link
    Automatically assessing emotional valence in human speech has historically been a difficult task for machine learning algorithms. The subtle changes in the voice of the speaker that are indicative of positive or negative emotional states are often "overshadowed" by voice characteristics relating to emotional intensity or emotional activation. In this work we explore a representation learning approach that automatically derives discriminative representations of emotional speech. In particular, we investigate two machine learning strategies to improve classifier performance: (1) utilization of unlabeled data using a deep convolutional generative adversarial network (DCGAN), and (2) multitask learning. Within our extensive experiments we leverage a multitask annotated emotional corpus as well as a large unlabeled meeting corpus (around 100 hours). Our speaker-independent classification experiments show that in particular the use of unlabeled data in our investigations improves performance of the classifiers and both fully supervised baseline approaches are outperformed considerably. We improve the classification of emotional valence on a discrete 5-point scale to 43.88% and on a 3-point scale to 49.80%, which is competitive to state-of-the-art performance

    Fingerprinting Smart Devices Through Embedded Acoustic Components

    Full text link
    The widespread use of smart devices gives rise to both security and privacy concerns. Fingerprinting smart devices can assist in authenticating physical devices, but it can also jeopardize privacy by allowing remote identification without user awareness. We propose a novel fingerprinting approach that uses the microphones and speakers of smart phones to uniquely identify an individual device. During fabrication, subtle imperfections arise in device microphones and speakers which induce anomalies in produced and received sounds. We exploit this observation to fingerprint smart devices through playback and recording of audio samples. We use audio-metric tools to analyze and explore different acoustic features and analyze their ability to successfully fingerprint smart devices. Our experiments show that it is even possible to fingerprint devices that have the same vendor and model; we were able to accurately distinguish over 93% of all recorded audio clips from 15 different units of the same model. Our study identifies the prominent acoustic features capable of fingerprinting devices with high success rate and examines the effect of background noise and other variables on fingerprinting accuracy

    Entropy-based feature extraction for electromagnetic discharges classification in high-voltage power generation

    Get PDF
    This work exploits four entropy measures known as Sample, Permutation, Weighted Permutation, and Dispersion Entropy to extract relevant information from Electromagnetic Interference (EMI) discharge signals that are useful in fault diagnosis of High-Voltage (HV) equipment. Multi-class classification algorithms are used to classify or distinguish between various discharge sources such as Partial Discharges (PD), Exciter, Arcing, micro Sparking and Random Noise. The signals were measured and recorded on different sites followed by EMI expert’s data analysis in order to identify and label the discharge source type contained within the signal. The classification was performed both within each site and across all sites. The system performs well for both cases with extremely high classification accuracy within site. This work demonstrates the ability to extract relevant entropy-based features from EMI discharge sources from time-resolved signals requiring minimal computation making the system ideal for a potential application to online condition monitoring based on EMI

    Denoising Deep Neural Networks Based Voice Activity Detection

    Full text link
    Recently, the deep-belief-networks (DBN) based voice activity detection (VAD) has been proposed. It is powerful in fusing the advantages of multiple features, and achieves the state-of-the-art performance. However, the deep layers of the DBN-based VAD do not show an apparent superiority to the shallower layers. In this paper, we propose a denoising-deep-neural-network (DDNN) based VAD to address the aforementioned problem. Specifically, we pre-train a deep neural network in a special unsupervised denoising greedy layer-wise mode, and then fine-tune the whole network in a supervised way by the common back-propagation algorithm. In the pre-training phase, we take the noisy speech signals as the visible layer and try to extract a new feature that minimizes the reconstruction cross-entropy loss between the noisy speech signals and its corresponding clean speech signals. Experimental results show that the proposed DDNN-based VAD not only outperforms the DBN-based VAD but also shows an apparent performance improvement of the deep layers over shallower layers.Comment: This paper has been accepted by IEEE ICASSP-2013, and will be published online after May, 201

    Deep Architectures and Ensembles for Semantic Video Classification

    Get PDF
    This work addresses the problem of accurate semantic labelling of short videos. To this end, a multitude of different deep nets, ranging from traditional recurrent neural networks (LSTM, GRU), temporal agnostic networks (FV,VLAD,BoW), fully connected neural networks mid-stage AV fusion and others. Additionally, we also propose a residual architecture-based DNN for video classification, with state-of-the art classification performance at significantly reduced complexity. Furthermore, we propose four new approaches to diversity-driven multi-net ensembling, one based on fast correlation measure and three incorporating a DNN-based combiner. We show that significant performance gains can be achieved by ensembling diverse nets and we investigate factors contributing to high diversity. Based on the extensive YouTube8M dataset, we provide an in-depth evaluation and analysis of their behaviour. We show that the performance of the ensemble is state-of-the-art achieving the highest accuracy on the YouTube-8M Kaggle test data. The performance of the ensemble of classifiers was also evaluated on the HMDB51 and UCF101 datasets, and show that the resulting method achieves comparable accuracy with state-of-the-art methods using similar input features

    Weakly-Supervised Temporal Localization via Occurrence Count Learning

    Get PDF
    We propose a novel model for temporal detection and localization which allows the training of deep neural networks using only counts of event occurrences as training labels. This powerful weakly-supervised framework alleviates the burden of the imprecise and time-consuming process of annotating event locations in temporal data. Unlike existing methods, in which localization is explicitly achieved by design, our model learns localization implicitly as a byproduct of learning to count instances. This unique feature is a direct consequence of the model's theoretical properties. We validate the effectiveness of our approach in a number of experiments (drum hit and piano onset detection in audio, digit detection in images) and demonstrate performance comparable to that of fully-supervised state-of-the-art methods, despite much weaker training requirements.Comment: Accepted at ICML 201

    Towards Emotion Recognition: A Persistent Entropy Application

    Get PDF
    Emotion recognition and classification is a very active area of research. In this paper, we present a first approach to emotion classification using persistent entropy and support vector machines. A topology-based model is applied to obtain a single real number from each raw signal. These data are used as input of a support vector machine to classify signals into 8 different emotions (calm, happy, sad, angry, fearful, disgust and surprised)

    A toolbox for animal call recognition

    Get PDF
    Monitoring the natural environment is increasingly important as habit degradation and climate change reduce theworld’s biodiversity.We have developed software tools and applications to assist ecologists with the collection and analysis of acoustic data at large spatial and temporal scales.One of our key objectives is automated animal call recognition, and our approach has three novel attributes. First, we work with raw environmental audio, contaminated by noise and artefacts and containing calls that vary greatly in volume depending on the animal’s proximity to the microphone. Second, initial experimentation suggested that no single recognizer could dealwith the enormous variety of calls. Therefore, we developed a toolbox of generic recognizers to extract invariant features for each call type. Third, many species are cryptic and offer little data with which to train a recognizer. Many popular machine learning methods require large volumes of training and validation data and considerable time and expertise to prepare. Consequently we adopt bootstrap techniques that can be initiated with little data and refined subsequently. In this paper, we describe our recognition tools and present results for real ecological problems
    • …
    corecore