25,706 research outputs found

    Predictive User Modeling with Actionable Attributes

    Get PDF
    Different machine learning techniques have been proposed and used for modeling individual and group user needs, interests and preferences. In the traditional predictive modeling instances are described by observable variables, called attributes. The goal is to learn a model for predicting the target variable for unseen instances. For example, for marketing purposes a company consider profiling a new user based on her observed web browsing behavior, referral keywords or other relevant information. In many real world applications the values of some attributes are not only observable, but can be actively decided by a decision maker. Furthermore, in some of such applications the decision maker is interested not only to generate accurate predictions, but to maximize the probability of the desired outcome. For example, a direct marketing manager can choose which type of a special offer to send to a client (actionable attribute), hoping that the right choice will result in a positive response with a higher probability. We study how to learn to choose the value of an actionable attribute in order to maximize the probability of a desired outcome in predictive modeling. We emphasize that not all instances are equally sensitive to changes in actions. Accurate choice of an action is critical for those instances, which are on the borderline (e.g. users who do not have a strong opinion one way or the other). We formulate three supervised learning approaches for learning to select the value of an actionable attribute at an instance level. We also introduce a focused training procedure which puts more emphasis on the situations where varying the action is the most likely to take the effect. The proof of concept experimental validation on two real-world case studies in web analytics and e-learning domains highlights the potential of the proposed approaches

    Generalized Zero-Shot Learning via Synthesized Examples

    Full text link
    We present a generative framework for generalized zero-shot learning where the training and test classes are not necessarily disjoint. Built upon a variational autoencoder based architecture, consisting of a probabilistic encoder and a probabilistic conditional decoder, our model can generate novel exemplars from seen/unseen classes, given their respective class attributes. These exemplars can subsequently be used to train any off-the-shelf classification model. One of the key aspects of our encoder-decoder architecture is a feedback-driven mechanism in which a discriminator (a multivariate regressor) learns to map the generated exemplars to the corresponding class attribute vectors, leading to an improved generator. Our model's ability to generate and leverage examples from unseen classes to train the classification model naturally helps to mitigate the bias towards predicting seen classes in generalized zero-shot learning settings. Through a comprehensive set of experiments, we show that our model outperforms several state-of-the-art methods, on several benchmark datasets, for both standard as well as generalized zero-shot learning.Comment: Accepted in CVPR'1

    An empirical comparison of supervised machine learning techniques in bioinformatics

    Get PDF
    Research in bioinformatics is driven by the experimental data. Current biological databases are populated by vast amounts of experimental data. Machine learning has been widely applied to bioinformatics and has gained a lot of success in this research area. At present, with various learning algorithms available in the literature, researchers are facing difficulties in choosing the best method that can apply to their data. We performed an empirical study on 7 individual learning systems and 9 different combined methods on 4 different biological data sets, and provide some suggested issues to be considered when answering the following questions: (i) How does one choose which algorithm is best suitable for their data set? (ii) Are combined methods better than a single approach? (iii) How does one compare the effectiveness of a particular algorithm to the others

    Semi-Adversarial Networks: Convolutional Autoencoders for Imparting Privacy to Face Images

    Full text link
    In this paper, we design and evaluate a convolutional autoencoder that perturbs an input face image to impart privacy to a subject. Specifically, the proposed autoencoder transforms an input face image such that the transformed image can be successfully used for face recognition but not for gender classification. In order to train this autoencoder, we propose a novel training scheme, referred to as semi-adversarial training in this work. The training is facilitated by attaching a semi-adversarial module consisting of a pseudo gender classifier and a pseudo face matcher to the autoencoder. The objective function utilized for training this network has three terms: one to ensure that the perturbed image is a realistic face image; another to ensure that the gender attributes of the face are confounded; and a third to ensure that biometric recognition performance due to the perturbed image is not impacted. Extensive experiments confirm the efficacy of the proposed architecture in extending gender privacy to face images

    InfoScrub: Towards Attribute Privacy by Targeted Obfuscation

    Get PDF
    Personal photos of individuals when shared online, apart from exhibiting a myriad of memorable details, also reveals a wide range of private information and potentially entails privacy risks (e.g., online harassment, tracking). To mitigate such risks, it is crucial to study techniques that allow individuals to limit the private information leaked in visual data. We tackle this problem in a novel image obfuscation framework: to maximize entropy on inferences over targeted privacy attributes, while retaining image fidelity. We approach the problem based on an encoder-decoder style architecture, with two key novelties: (a) introducing a discriminator to perform bi-directional translation simultaneously from multiple unpaired domains; (b) predicting an image interpolation which maximizes uncertainty over a target set of attributes. We find our approach generates obfuscated images faithful to the original input images, and additionally increase uncertainty by 6.2×\times (or up to 0.85 bits) over the non-obfuscated counterparts.Comment: 20 pages, 7 figure

    Diacritic Restoration and the Development of a Part-of-Speech Tagset for the Māori Language

    Get PDF
    This thesis investigates two fundamental problems in natural language processing: diacritic restoration and part-of-speech tagging. Over the past three decades, statistical approaches to diacritic restoration and part-of-speech tagging have grown in interest as a consequence of the increasing availability of manually annotated training data in major languages such as English and French. However, these approaches are not practical for most minority languages, where appropriate training data is either non-existent or not publically available. Furthermore, before developing a part-of-speech tagging system, a suitable tagset is required for that language. In this thesis, we make the following contributions to bridge this gap: Firstly, we propose a method for diacritic restoration based on naive Bayes classifiers that act at word-level. Classifications are based on a rich set of features, extracted automatically from training data in the form of diacritically marked text. This method requires no additional resources, which makes it language independent. The algorithm was evaluated on one language, namely Māori, and an accuracy exceeding 99% was observed. Secondly, we present our work on creating one of the necessary resources for the development of a part-of-speech tagging system in Māori, that of a suitable tagset. The tagset described was developed in accordance with the EAGLES guidelines for morphosyntactic annotation of corpora, and was the result of in-depth analysis of the Māori grammar
    • 

    corecore